login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123178
Define K(n) = Integral_{t=-1..1} (t^(2n)*(1-t^2)^(2n)/(1+it)^(3n+1))dt, and write K(n) = a(n)*Pi - b(n)/c(n) where a(n), b(n), c(n) are positive integers; the sequence gives a(n).
7
14, 968, 75920, 6288296, 537005664, 46764723632, 4128230266160, 368090979124960, 33073373083339904, 2989771785328137728, 271603565356722214784, 24774311300942501337728, 2267541753957311770329600
OFFSET
1,1
COMMENTS
The integrals K(n) give us a sequence of approximation to Pi whose qualities exceed 1.0449 in the long run. a(n) is divisible by 2^floor(n/2).
The integral K(n) can be evaluated for large n using Hermite reduction. In the range n = 1...200, a quality less than 1.0449 occurs irregularly, for n = 11, 16, 19, 23, 24, 32, 38, 42, 46, 50, 51, 55, 63, 85, 91, 94, 95, 100, 101, 103. - Bradley Klee, Jun 16 2018
Comment from Michael Somos, Jun 23 2018: The "quality" of approximations is as given by Frits Beukers "A rational approach to pi" where he writes "... |22/7 - pi| = 1/7^3.439, |355/113-pi| = 1/113^3.201. The exponents 3.429 and 3.201 will be called the _quality_ of the respective approximations."
(Pseudocode, from Bradley Klee, Jun 18 2018)
Function HermiteReduce(f(t),g(t),m)
1: If m>1:
2: {u(t),v(t)} <- Solve f(t)=u(t)*g(t)+v(t)*g'(t);
3: Return HermiteReduce(u(t)+1/(m-1)*v'(t),g(t),m-1)
4: ElseIf m=1:
5: Return f(t)/g(t)
Function a(n)
1: f(t) <- ((1-i*t)^(3*n+1)+(1+i*t)^(3*n+1))*t^(2*n)*(1-t^2)^(2*n);
2: g(t) <- (1+t^2);
3: [dx] <- HermiteReduce(f(t),g(t),3*n+1)*dt; ( drop exact differentials )
4: Return (1/Pi)*Integral_{t=0..1} [dx]
REFERENCES
Manuel Bronstein, Symbolic Integration I: Transcendental Functions, Springer, 2000, pages 39-46.
LINKS
Frits Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 378.
Sam Blake, Integration Using Hermite Reduction, Wolfram Demonstrations Project.
FORMULA
64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816 + 755*n + 165*n^2)*a(n) - 48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039 + 4103*n + 2595*n^2 + 495*n^3)*a(n+1) + 6*(5+2*n)*(4+3*n)*(5+3*n)*(893628 + 2406908*n + 2163923*n^2 + 803750*n^3 + 106095*n^4)*a(n+2) - 9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226 + 425*n + 165*n^2)*a(n+3) = 0. - Bradley Klee, Jun 20 2018
Define F(x) the g.f. of these a(n), G(x)=1/2+F(x), and G^(n)(x)=d^n/dx^n G(x). Period G(x) satisfies a Picard-Fuchs type differential equation, 0=Sum_{m=0..9,n=0..5}M_{m,n} x^m G^(n)(x), with integer matrix:
M={{698544,-24948,0,0,0,0},
{-2344608,33884712,-224532,0,0,0},
{2305584,-34982100,787834836,-3255714,0,0},
{-3490848,65404872,-690185556,1319686128,-3031182,0},
{4487040,-85092672,973263876,-1454575542,508724631,-505197},
{0,89740800,-280713984,2717626800,-642933018,48807765},
{0,0,190699200,-235103952,1409057154,-67970205},
{0,0,0,109184640,-61373632,164264580},
{0,0,0,0,20939520,-4518080},
{0,0,0,0,0,1196544}} - Bradley Klee, Jun 24 2018
EXAMPLE
K(5) = -3618728790016/2145 + 537005664*Pi so a(5) = 537005664.
MAPLE
Kn := proc(n) local a, l ; a := 0 : for l from 0 to (3*n+1)/2 do a := a+2*binomial(3*n+1, 2*l)*(-1)^l* int(t^(2*n+2*l)*(1-t^2)^(2*n)/(1+t^2)^(3*n+1), t=0..1) ; od ; a := subs(Pi=x, a) ; RETURN(a) ; end: A123178 := proc(n) RETURN( coeftayl(Kn(n), x=0, 1)) ; end: for n from 1 to 20 do printf("%d, ", A123178(n)) ; od ; # R. J. Mathar, Oct 07 2006
MATHEMATICA
f[n_] := CoefficientList[ Integrate[t^(2n)*(1 - t^2)^(2n)/(1 + I*t)^(3n + 1), {t, -1, 1}], Pi][[ -1]]; Array[f, 13] (* Robert G. Wilson v *)
HermiteReduce[num_, den_, m_] := If[m > 1, Module[{cl = CoefficientList[num, t], deg, u, v, sol}, If[Length[cl] == 1, cl = PadRight[cl, 3]]; deg=Length[cl]-1; u = Total[c[#] t^(2*#) & /@ Range[0, deg/2 - 1]]; v = Plus[ Total[-c[#] (m - 1)/(2 # + 1) t^(2*# + 1) & /@ Range[0, deg/2 - 1]], c[-1] t]; sol = Solve@MapThread[Equal, {cl, CoefficientList[Expand[Dot[{1 + t^2, 2 t}, {u, v}]], t]}]; HermiteReduce[Expand@ReplaceAll[u + 1/(m - 1) D[v, t], sol[[1]]], den, m-1]], num/4]
HermiteReduce[t^(2*#)*(1-t^2)^(2*#)*((1 + I*t)^(3*#+1)+(1-I*t)^(3*#+1)), (1+t^2), 3*#+1]&/@Range[20](* Bradley Klee, Jun 18 2018 *)
RecurrenceTable[{64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816+755*n+165*n^2)*a[n]-48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039+4103*n+2595*n^2+495*n^3)*a[n+1]+6*(5+2*n)*(4+3*n)*(5+3*n)*(893628+2406908*n+2163923*n^2+803750*n^3+106095*n^4)*a[n+2]-9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226+425*n+165*n^2)*a[n+3]==0,
a[0]==1/2, a[1]==14, a[2]==968}, a, {n, 1, 5000}] (* Bradley Klee, Jun 24 2018 *)
CROSSREFS
Sequence in context: A171183 A064729 A189304 * A208318 A349737 A263217
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 03 2006
EXTENSIONS
More terms from R. J. Mathar, Oct 07 2006
STATUS
approved