login
A171183
Numbers n such that sigmawt(n) = sigmawt(n+1), where sigmawt(n) is the sum of the divisors of n weighted by divisor multiplicity in n.
1
14, 957, 1334, 1634, 2402, 2685, 20145, 33998, 42818, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 147454, 166934, 201597, 274533, 289454, 347738, 383594, 416577, 440013, 544334, 605985, 649154, 655005, 1060802, 1642154, 1674513
OFFSET
1,1
LINKS
MATHEMATICA
divmult[d_, n_] := Module[{output, i}, If[d == 1, output = 1, If[d == n, output = 1, i = 0; While[Mod[n, d^(i + 1)] == 0, i = i + 1]; output = i]]; output]; dmt[n_] := Module[{divs, l}, divs = Divisors[n]; l = Length[divs]; Sum[divmult[divs[[i]], n]*divs[[i]], {i, 1, l}]]; l = {}; Do[If[dmt[i] == dmt[i + 1], l = Append[l, i]], {i, 1, 10^6}]; l
CROSSREFS
See A168512 for definition of divisor multiplicity.
Sequence in context: A199651 A241110 A055152 * A064729 A189304 A123178
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Dec 05 2009
EXTENSIONS
Extended by Ray Chandler, Dec 08 2009
STATUS
approved