login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064729
Numbers k such that k and k+1 have the same sum of unitary and nonunitary divisors.
1
14, 957, 1334, 1634, 2685, 20145, 33998, 42818, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 147454, 166934, 201597, 274533, 289454, 347738, 383594, 416577, 440013, 544334, 605985, 649154, 655005, 1642154, 1857513, 2168906, 2284814
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1375 (terms 1..190 from Harry J. Smith)
MATHEMATICA
g[1]={1, 1}; g[n_] := { Times @@ (1 + Power @@@ (f = FactorInteger[n])), Times @@ ((f[[;; , 1]]^(f[[;; , 2]]+1)- 1)/(f[[;; , 1]]-1))}; s={}; g1={0, 0}; Do[g2=g[n]; If[g1==g2, AppendTo[s, n-1]]; g1=g2, {n, 1, 50000}]; s (* Amiram Eldar, Jun 19 2019 *)
PROG
(PARI) {usigma(n, s=1, fac, i) = fac=factor(n); for(i=1, matsize(fac)[1], s=s*(1+fac[i, 1]^fac[i, 2])); return(s); } nu(n) = sigma(n)-usigma(n); for(n=1, 10^7, if(usigma(n)==usigma(n+1) && nu(n)==nu(n+1), print1(n, ", ")))
(PARI) usigma(n)= { local(f, s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) } nu(n)= { sigma(n) - usigma(n) } { n=0; for (m = 1, 10^10, if(usigma(m)==usigma(m + 1) && nu(m)==nu(m + 1), write("b064729.txt", n++, " ", m); if (n==190, break)) ) } \\ Harry J. Smith, Sep 24 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Oct 17 2001
EXTENSIONS
a(27)-a(32) from Harry J. Smith, Sep 24 2009
STATUS
approved