login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064730
Numbers whose sum of nonunitary divisors and sum of unitary divisors are both positive squares.
5
15012, 124956, 128412, 135972, 186732, 219520, 241812, 377892, 414180, 420660, 447876, 453060, 453492, 497772, 504036, 515052, 523044, 528876, 544212, 658560, 776412, 826956, 1009792, 1020060, 1135836, 1191132, 1425060, 1467180, 1511892
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..750 from Harry J. Smith)
MATHEMATICA
sqQ[n_] := IntegerQ[Sqrt[n]]; f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e+1)-1)/(p-1); q[n_] := Module[{fct = FactorInteger[n], u}, If[AllTrue[fct[[;; , 2]], # == 1 &], False, u = Times @@ f1 @@@ fct; sqQ[u] && sqQ[Times @@ f2 @@@ fct - u]]]; Select[Range[10^6], q] (* Amiram Eldar, Jul 27 2024 *)
PROG
(PARI) {usigma(n, s=1, fac, i) = fac=factor(n); for(i=1, matsize(fac)[1], s=s*(1+fac[i, 1]^fac[i, 2])); return(s); } nu(n) = sigma(n)-usigma(n); for(n=1, 10^8, if(nu(n)>0 && issquare(nu(n)) && issquare(usigma(n)), print1(n, ", ")))
(PARI) usigma(n)= { local(f, s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
{ n=0; for (m = 1, 10^9, u=usigma(m); nu=sigma(m) - u; if (nu>0 && issquare(nu) && issquare(u), write("b064730.txt", n++, " ", m); if (n==750, break)) ) } \\ Harry J. Smith, Sep 24 2009
(PARI) is(n) = {my(f = factor(n), u); if(issquarefree(f), 0, u = prod(k=1, #f~, f[k, 1]^f[k, 2]+1); issquare(u) && issquare(sigma(f) - u)); } \\ Amiram Eldar, Jul 27 2024
CROSSREFS
Sequence in context: A178929 A145275 A234654 * A081635 A165614 A104875
KEYWORD
nonn
AUTHOR
Jason Earls, Oct 17 2001
STATUS
approved