The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048146 Sum of non-unitary divisors of n. 47
 0, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 8, 0, 0, 0, 14, 0, 9, 0, 12, 0, 0, 0, 24, 5, 0, 12, 16, 0, 0, 0, 30, 0, 0, 0, 41, 0, 0, 0, 36, 0, 0, 0, 24, 18, 0, 0, 56, 7, 15, 0, 28, 0, 36, 0, 48, 0, 0, 0, 48, 0, 0, 24, 62, 0, 0, 0, 36, 0, 0, 0, 105, 0, 0, 20, 40, 0, 0, 0, 84, 39, 0, 0, 64, 0, 0, 0, 72, 0, 54, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(n) = A000203(n) - A034448(n) = sigma(n) - usigma(n). a(1) = 0, a(p) = 0, a(pq) = 0, a(pq...z) = 0, a(p^k) = (p^k - p) / (p - 1), for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k >=2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1) k = natural numbers (A000027). EXAMPLE If n = 1000, the 12 non-unitary divisors are {2, 4, 5, 10, 20, 25, 40, 50, 100, 200, 250, 500} and their sum is a(n) = a(1000) = 1206. a(16) = a(2^4) = (2^4 - 2) / (2 - 1)= 14. MATHEMATICA us[n_Integer] := (d = Divisors[n]; l = Length[d]; k = 1; s = n; While[k < l, If[ GCD[ d[[k]], n/d[[k]] ] == 1, s = s + d[[k]]]; k++ ]; s); Table[ DivisorSigma[1, n] - us[n], {n, 1, 100} ] (* Second program: *) Table[DivisorSum[n, # &, ! CoprimeQ[#, n/#] &], {n, 91}] (* Michael De Vlieger, Nov 20 2017 *) PROG (PARI) a(n)=my(f=factor(n)); sigma(f)-prod(i=1, #f~, f[i, 1]^f[i, 2]+1) \\ Charles R Greathouse IV, Jun 17 2015 CROSSREFS Cf. A034444, A000203, A048105, A048106, A048107, A048109, A048111, A005117. Sequence in context: A094315 A212148 A336563 * A334045 A028973 A066503 Adjacent sequences:  A048143 A048144 A048145 * A048147 A048148 A048149 KEYWORD nonn AUTHOR EXTENSIONS Edited by Jaroslav Krizek, Mar 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:03 EST 2020. Contains 338944 sequences. (Running on oeis4.)