login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171184
G.f. satisfies: A(x) = A(x)^2 - x*A(2x).
1
1, 1, 1, 2, 11, 150, 4474, 277044, 34897875, 8863484966, 4520306307806, 4619735172579132, 9451969086159465470, 38696352180977336223228, 316923105439684775855164884, 5191834235882300670847354499880
OFFSET
0,4
LINKS
FORMULA
a(n) = 2^(n-1)*a(n-1) - Sum_{k=1..n-1} a(k)*a(n-k) for n>0 with a(0)=1.
G.f.: A(x) = 1 + x*A(2x)/A(x).
a(n) ~ c * 2^(n*(n-1)/2), where c = 0.1279729718630988916686793555289366866035815816364398379... . - Vaclav Kotesovec, Aug 08 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 11*x^4 + 150*x^5 + 4474*x^6 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 27*x^4 + 326*x^5 + 9274*x^6 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*subst(A, x, 2*x +x*O(x^n))/(A+x*O(x^n))); polcoeff(A, n)}
(PARI) {a(n)=if(n==0, 1, 2^(n-1)*a(n-1)-sum(k=1, n-1, a(k)*a(n-k)))}
CROSSREFS
Sequence in context: A185245 A006122 A111014 * A297676 A049462 A227328
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 09 2009
STATUS
approved