OFFSET
0,2
COMMENTS
Generally, a(n) ~ c * q^(n^2/4), where c = EllipticTheta[3,0,1/q]/QPochhammer[1/q,1/q] if n is even and c = EllipticTheta[2,0,1/q]/QPochhammer[1/q,1/q] if n is odd. - Vaclav Kotesovec, Aug 21 2013
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..65
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
a(n) = 2*a(n-1)+(8^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 8^(n^2/4), where c = EllipticTheta[3,0,1/8]/QPochhammer[1/8,1/8] = 1.455061175158... if n is even and c = EllipticTheta[2,0,1/8]/QPochhammer[1/8,1/8] = 1.405381182498... if n is odd. - Vaclav Kotesovec, Aug 21 2013
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(8^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Table[Sum[QBinomial[n, k, 8], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)
PROG
(Magma) [n le 2 select n else 2*Self(n-1)+(8^(n-2)-1)*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 13 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved