login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006122
Sum of Gaussian binomial coefficients [ n,k ] for q=8.
(Formerly M2010)
6
1, 2, 11, 148, 5917, 617894, 195118127, 162366823096, 409516908802369, 2724882133766162378, 54969878431787791720019, 2925929849527072623051175132, 472193512063977840212540697627493, 201069312609841845828101079279279809006
OFFSET
0,2
COMMENTS
Generally, a(n) ~ c * q^(n^2/4), where c = EllipticTheta[3,0,1/q]/QPochhammer[1/q,1/q] if n is even and c = EllipticTheta[2,0,1/q]/QPochhammer[1/q,1/q] if n is odd. - Vaclav Kotesovec, Aug 21 2013
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
a(n) = 2*a(n-1)+(8^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013
a(n) ~ c * 8^(n^2/4), where c = EllipticTheta[3,0,1/8]/QPochhammer[1/8,1/8] = 1.455061175158... if n is even and c = EllipticTheta[2,0,1/8]/QPochhammer[1/8,1/8] = 1.405381182498... if n is odd. - Vaclav Kotesovec, Aug 21 2013
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(8^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Table[Sum[QBinomial[n, k, 8], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)
PROG
(Magma) [n le 2 select n else 2*Self(n-1)+(8^(n-2)-1)*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 13 2016
CROSSREFS
Sequence in context: A203203 A046912 A185245 * A111014 A171184 A297676
KEYWORD
easy,nonn
STATUS
approved