login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006124
a(n) = 3 + n/2 + 7*n^2/2.
2
3, 7, 18, 36, 61, 93, 132, 178, 231, 291, 358, 432, 513, 601, 696, 798, 907, 1023, 1146, 1276, 1413, 1557, 1708, 1866, 2031, 2203, 2382, 2568, 2761, 2961, 3168, 3382, 3603, 3831, 4066, 4308, 4557, 4813, 5076, 5346, 5623, 5907, 6198, 6496, 6801, 7113, 7432
OFFSET
0,1
LINKS
Jonathan L. King, A change-of-coordinates from Geometry to Algebra, applied to Brick Tilings, arXiv:math/9809176 [math.CO], 1998, page 10, row 3 of the table.
C. L. Mallows & N. J. A. Sloane, Emails, May 1991
C. L. Mallows & N. J. A. Sloane, Emails, Jun. 1991
FORMULA
G.f.: (3-2*x+6*x^2)/(1-x)^3. - Vincenzo Librandi, Jul 07 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 07 2012
a(n) = 3+A022265(n). - R. J. Mathar, Jan 12 2024
MATHEMATICA
Table[3+n/2+7/2 n^2, {n, 0, 50}] (* Harvey P. Dale, Mar 21 2011 *)
CoefficientList[Series[(3-2*x+6*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
PROG
(Magma) I:=[3, 7, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
(PARI) a(n)=3+n/2+7*n^2/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A308445 A328653 A011799 * A197182 A074587 A208715
KEYWORD
nonn,easy
AUTHOR
STATUS
approved