The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006124 a(n) = 3 + n/2 + 7*n^2/2. 2
 3, 7, 18, 36, 61, 93, 132, 178, 231, 291, 358, 432, 513, 601, 696, 798, 907, 1023, 1146, 1276, 1413, 1557, 1708, 1866, 2031, 2203, 2382, 2568, 2761, 2961, 3168, 3382, 3603, 3831, 4066, 4308, 4557, 4813, 5076, 5346, 5623, 5907, 6198, 6496, 6801, 7113, 7432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Jonathan L. King, Brick tiling and monotone Boolean functions Jonathan L. King, A change-of-coordinates from Geometry to Algebra, applied to Brick Tilings, arXiv:math/9809176 [math.CO], 1998, page 10, row 3 of the table. C. L. Mallows & N. J. A. Sloane, Emails, May 1991 C. L. Mallows & N. J. A. Sloane, Emails, Jun. 1991 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (3-2*x+6*x^2)/(1-x)^3. - Vincenzo Librandi, Jul 07 2012 a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 07 2012 MATHEMATICA Table[3+n/2+7/2 n^2, {n, 0, 50}]  (* Harvey P. Dale, Mar 21 2011 *) CoefficientList[Series[(3-2*x+6*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *) PROG (MAGMA) I:=[3, 7, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012 (PARI) a(n)=3+n/2+7*n^2/2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Sequence in context: A308445 A328653 A011799 * A197182 A074587 A208715 Adjacent sequences:  A006121 A006122 A006123 * A006125 A006126 A006127 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 01:55 EDT 2021. Contains 343937 sequences. (Running on oeis4.)