login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171187
a(n) = Sum_{k=0..[n/2]} A034807(n,k)^n, where A034807 is a triangle of Lucas polynomials.
2
1, 1, 5, 28, 273, 6251, 578162, 107060591, 29911744769, 27309372325966, 100510174785157275, 579282314757603925315, 5692451844585536053973346, 272831740026972379247127727751, 36494329378701187545939734030067963
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..[n/2]} [C(n-k,k) + C(n-k-1,k-1)]^n.
Ignoring the zeroth term, equals the logarithmic derivative of A171186.
EXAMPLE
The n-th term equals the sum of the n-th powers of the n-th row of triangle A034807:
a(0) = 2^0 = 1;
a(1) = 1^1 = 1;
a(2) = 1^2 + 2^2 = 5;
a(3) = 1^3 + 3^3 = 28;
a(4) = 1^4 + 4^4 + 2^4 = 273;
a(5) = 1^5 + 5^5 + 5^5 = 6251;
a(6) = 1^6 + 6^6 + 9^6 + 2^6 = 578162;
a(7) = 1^7 + 7^7 + 14^7 + 7^7 = 107060591; ...
PROG
(PARI) {a(n)=sum(k=0, n\2, (binomial(n-k, k)+binomial(n-k-1, k-1))^n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 13 2009
STATUS
approved