login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290881
E.g.f. S(x) satisfies: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where C(x) is the e.g.f. of A290880.
5
1, -1, 25, -1705, 227665, -50333425, 16655398825, -7711225809625, 4760499335502625, -3779764853639958625, 3752942823715824285625, -4556465805050372544735625, 6641455313355871353308640625, -11445605320939175012746492140625, 23021828780691053491298409381015625, -53450977127256739279274500814544765625
OFFSET
1,3
LINKS
FORMULA
E.g.f.: S(x) = Series_Reversion( Integral sqrt( (1 + 2*x^2) / (1 + x^2) ) dx ).
E.g.f.: S(x) = sinh( Series_Reversion( Integral sqrt( cosh(2*x) ) dx ) ).
Let C(x) be the e.g.f. of A290880, then:
(1) C'(x) = S(x) / sqrt(C(x)^2 + S(x)^2),
(2) S'(x) = C(x) / sqrt(C(x)^2 + S(x)^2),
such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.
EXAMPLE
E.g.f.: S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
such that C(x)^2 - S(x)^2 = 1 where C(x) begins:
C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(2*n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); (2*n-1)!*polcoeff(S, 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
(PARI) {a(n) = my(C=1); S = serreverse( intformal( sqrt( (1+2*x^2) / (1+x^2 + O(x^(2*n+2))) ) )); (2*n-1)!*polcoeff(S, 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
(PARI) {a(n) = my(S=x); S = sinh( serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) )); (2*n-1)!*polcoeff(S, 2*n-1)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 13 2017
STATUS
approved