login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290882
E.g.f. E(x) = C(x) + S(x) such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where C(x) is the e.g.f. of A290880 and S(x) is the e.g.f. of A290881.
5
1, 1, 1, -1, -7, 25, 265, -1705, -24175, 227665, 4037425, -50333425, -1070526775, 16655398825, 412826556025, -7711225809625, -218150106913375, 4760499335502625, 151297155973926625, -3779764853639958625, -133288452772763494375, 3752942823715824285625, 145378048431548466795625, -4556465805050372544735625, -192296944484564858674279375, 6641455313355871353308640625
OFFSET
0,5
LINKS
FORMULA
E.g.f.: E(x) = exp( Series_Reversion( Integral sqrt( cosh(2*x) ) dx ) ).
EXAMPLE
E.g.f.: E(x) = 1 + x + x^2/2! - x^3/3! - 7*x^4/4! + 25*x^5/5! + 265*x^6/6! - 1705*x^7/7! - 24175*x^8/8! + 227665*x^9/9! + 4037425*x^10/10! - 50333425*x^11/11! - 1070526775*x^12/12! + 16655398825*x^13/13! + 412826556025*x^14/14! - 7711225809625*x^15/15! - 218150106913375*x^16/16! +...
such that E(x) = C(x) + S(x) where
S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
These series satisfy: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); n!*polcoeff(C + S, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(E=1); E = exp( serreverse( intformal( sqrt(cosh(2*x + O(x^(n+2)))) ) )); n!*polcoeff(E, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 13 2017
STATUS
approved