login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153302
G.f.: A(x) = cm4(x)^2 + sm4(x)^2 where cm4(x) and sm4(x) are the g.f.s of A153300 and A153301, respectively, that satisfy cm4(x)^4 - sm4(x)^4 = 1.
10
1, 2, 12, 216, 7056, 368928, 28340928, 3000945024, 419025809664, 74600006164992, 16492933524114432, 4433180509950990336, 1423737921326106710016, 538417241668323364773888, 236818870322157143631249408
OFFSET
0,2
REFERENCES
E. van Fossen Conrad, Some continued fraction expansions of elliptic functions, PhD thesis, The Ohio State University, 2002, p. 35. [Paul Barry, Mar 29 2010]
FORMULA
G.f. satisfies: A(x)*A(i*x) = 1 where A(x) = Sum_{n>=0} a(n)*x^(2n)/(2n)! and i^2=-1.
From Paul D. Hanna, Apr 30 2009: (Start)
The o.g.f. G(x), as the formal Laplace transform of e.g.f. cm4(x)^2 + sm4(x)^2, is given by the continued fraction:
G(x) = 1/(1-2(x)^2/(1-(2x)^2/(1-2(3x)^2/(1-(4x)^2/(1-2(5x)^2/(1-...)))))).
(End)
Let f(x) = sqrt(x^4-1). Let D be the operator f(x)*d/dx. Then it appears that D^(2*n-1)(f(x)) evaluated at x = 1 equals a(n) (checked up to a(14)). - Peter Bala, Aug 30 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x*(2*k+1)^2/(1 - x*(2*k+2)^2/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
E.g.f.: A(x) = d/dx Series_Reversion( Integral sqrt( cosh(2*x) ) dx ). - Paul D. Hanna, Aug 13 2017
EXAMPLE
E.g.f.: A(x) = 1 + 2*x^2/2! + 12*x^4/4! + 216*x^6/6! + 7056*x^8/8! + 368928*x^10/10! + ...
From Paul D. Hanna, Apr 30 2009: (Start)
O.g.f.: G(x) = 1 + 2*x^2 + 12*x^4 + 216*x^6 + 7056*x^8 + ...
G(x) = 1/(1 - 2x^2/(1 - 4x^2/(1 - 18x^2/(1 - 16x^2/(1 - 50x^2/(1-...)))))).
(End)
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], With[ {m = 2 n}, m! SeriesCoefficient[ JacobiND[ x, 2], {x, 0, m}]]]; (* Michael Somos, Oct 18 2011 *)
a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, (-1)^n m! SeriesCoefficient[ JacobiAmplitude[ x, 2], {x, 0, m}]]]; (* Michael Somos, Mar 13 2017 *)
Table[Abs[SeriesCoefficient[InverseSeries[Series[EllipticF[x, 2], {x, 0, 40}]], 2 n + 1] (2 n + 1)!], {n, 0, 19}] (* Benedict W. J. Irwin, Apr 04 2017 *)
nmax = 20; s = CoefficientList[Series[JacobiNC[Sqrt[2] x, 1/2], {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!; Table[s[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 29 2020 *)
PROG
(PARI) {a(n) = my(A); if(n<0, 0, A=x*O(x); for(i=0, n, A = 1 + intformal( intformal(A^3)^3 ) ); (2*n)!*polcoeff( A^2 + sqrt(A^4-1), 2*n))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); A = deriv( serreverse( intformal( 1/sqrt(cosh(2*x + O(x^(2*n+2)))) ))); (2*n)!*polcoeff(A, 2*n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 13 2017
CROSSREFS
Sequence in context: A008352 A082491 A292812 * A123118 A367051 A182161
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 02 2009
STATUS
approved