The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082491 a(n) = n! * d(n), where n! = factorial numbers (A000142), d(n) = subfactorial numbers (A000166). 10
 1, 0, 2, 12, 216, 5280, 190800, 9344160, 598066560, 48443028480, 4844306476800, 586161043776000, 84407190782745600, 14264815236056985600, 2795903786354347468800, 629078351928420506112000, 161044058093696572354560000, 46541732789077953723039744000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is also the number of pairs of n-permutations p and q such that p(x)<>q(x) for each x in { 1, 2, ..., n }. Or number of n X n matrices with exactly one 1 and one 2 in each row and column, other entries 0 (cf. A001499). - Vladimir Shevelev, Mar 22 2010 a(n) is approximately equal to (n!)^2/e. - J. M. Bergot, Jun 09 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Ira Gessel, Enumerative applications of symmetric functions, SÃ©minaire Lotharingien de Combinatoire, B17a (1987), 17 pp. Shawn L. Witte, Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory, Ph. D. Dissertation, University of California-Davis (2020). FORMULA a(n) = n! * d(n) where d(n) = A000166(n). a(n) = Sum_{k=0..n} binomial(n, k)^2 * (-1)^k * (n - k)!^2 * k!. a(n+2) = (n+2)*(n+1) * ( a(n+1) + (n+1)*a(n) ). a(n) ~ 2*Pi*n^(2*n+1)*exp(-2*n-1). - Ilya Gutkovskiy, Dec 04 2016 MAPLE with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*n!, n=0..15); # Zerinvary Lajos, Jun 11 2008 MATHEMATICA Table[Subfactorial[n]*n!, {n, 0, 15}] (* Zerinvary Lajos, Jul 10 2009 *) PROG (Maxima) A000166[0]:1\$ A000166[n]:=n*A000166[n-1]+(-1)^n\$   makelist(n!*A000166[n], n, 0, 12); /* Emanuele Munarini, Mar 01 2011 */ (PARI) d(n)=if(n<1, n==0, n*d(n-1)+(-1)^n); a(n)=d(n)*n!; vector(33, n, a(n-1)) /* Joerg Arndt, May 28 2012 */ (PARI) {a(n) = if( n<2, n==0, n! * round(n! / exp(1)))}; /* Michael Somos, Jun 24 2018 */ (Python) A082491_list, m, x = [], 1, 1 for n in range(10*2): ....x, m = x*n**2 + m, -(n+1)*m ....A082491_list.append(x) # Chai Wah Wu, Nov 03 2014 (Scala) val A082491_pairs: LazyList[BigInt && BigInt] =   (BigInt(0), BigInt(1)) #::   (BigInt(1), BigInt(0)) #::   lift2 {     case ((n, z), (_, y)) =>       (n+2, (n+2)*(n+1)*((n+1)*z+y))   } (A082491_pairs, A082491_pairs.tail) val A082491: LazyList[BigInt] =   lift1(_._2)(A082491_pairs) /** Luc Duponcheel, Jan 25 2020 */ CROSSREFS Cf. A000142, A000166. Sequence in context: A156489 A129893 A008352 * A292812 A153302 A123118 Adjacent sequences:  A082488 A082489 A082490 * A082492 A082493 A082494 KEYWORD easy,nonn AUTHOR Emanuele Munarini, Apr 28 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 07:07 EDT 2021. Contains 347673 sequences. (Running on oeis4.)