login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082491
a(n) = n! * d(n), where n! = factorial numbers (A000142), d(n) = subfactorial numbers (A000166).
10
1, 0, 2, 12, 216, 5280, 190800, 9344160, 598066560, 48443028480, 4844306476800, 586161043776000, 84407190782745600, 14264815236056985600, 2795903786354347468800, 629078351928420506112000, 161044058093696572354560000, 46541732789077953723039744000
OFFSET
0,3
COMMENTS
a(n) is also the number of pairs of n-permutations p and q such that p(x)<>q(x) for each x in { 1, 2, ..., n }.
Or number of n X n matrices with exactly one 1 and one 2 in each row and column, other entries 0 (cf. A001499). - Vladimir Shevelev, Mar 22 2010
a(n) is approximately equal to (n!)^2/e. - J. M. Bergot, Jun 09 2018
LINKS
Ira Gessel, Enumerative applications of symmetric functions, Séminaire Lotharingien de Combinatoire, B17a (1987), 17 pp.
Shawn L. Witte, Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory, Ph. D. Dissertation, University of California-Davis (2020).
FORMULA
a(n) = n! * d(n) where d(n) = A000166(n).
a(n) = Sum_{k=0..n} binomial(n, k)^2 * (-1)^k * (n - k)!^2 * k!.
a(n+2) = (n+2)*(n+1) * ( a(n+1) + (n+1)*a(n) ).
a(n) ~ 2*Pi*n^(2*n+1)*exp(-2*n-1). - Ilya Gutkovskiy, Dec 04 2016
MAPLE
with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*n!, n=0..15); # Zerinvary Lajos, Jun 11 2008
MATHEMATICA
Table[Subfactorial[n]*n!, {n, 0, 15}] (* Zerinvary Lajos, Jul 10 2009 *)
PROG
(Maxima) A000166[0]:1$
A000166[n]:=n*A000166[n-1]+(-1)^n$
makelist(n!*A000166[n], n, 0, 12); /* Emanuele Munarini, Mar 01 2011 */
(PARI)
d(n)=if(n<1, n==0, n*d(n-1)+(-1)^n);
a(n)=d(n)*n!;
vector(33, n, a(n-1))
/* Joerg Arndt, May 28 2012 */
(PARI) {a(n) = if( n<2, n==0, n! * round(n! / exp(1)))}; /* Michael Somos, Jun 24 2018 */
(Python)
A082491_list, m, x = [], 1, 1
for n in range(10*2):
....x, m = x*n**2 + m, -(n+1)*m
....A082491_list.append(x) # Chai Wah Wu, Nov 03 2014
(Scala)
val A082491_pairs: LazyList[BigInt && BigInt] =
(BigInt(0), BigInt(1)) #::
(BigInt(1), BigInt(0)) #::
lift2 {
case ((n, z), (_, y)) =>
(n+2, (n+2)*(n+1)*((n+1)*z+y))
} (A082491_pairs, A082491_pairs.tail)
val A082491: LazyList[BigInt] =
lift1(_._2)(A082491_pairs)
/** Luc Duponcheel, Jan 25 2020 */
CROSSREFS
Sequence in context: A156489 A129893 A008352 * A292812 A153302 A123118
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Apr 28 2003
STATUS
approved