login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082489
a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k) * C(n+3*k,k) * C(n+4*k,k).
7
1, 121, 114121, 169417921, 308238414121, 629799991355641, 1387152264043496161, 3220175519103433952161, 7771784978946238318454761, 19326687177288750280293146161, 49215884415076728067274047737961, 127771596843320597524806463425540481
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{n>=0} (5*n)!/n!^5 * x^n / (1-x)^(5*n+1). - Paul D. Hanna, Sep 22 2013
Recurrence: n^4*(5*n-16)*(5*n-12)*(5*n-11)*(5*n-8)*(5*n-7)*(5*n-6)*a(n) = (5*n-16)*(5*n-12)*(5*n-11)*(5*n-4)*(78250*n^6 - 422550*n^5 + 885665*n^4 - 906704*n^3 + 468906*n^2 - 114379*n + 10086)*a(n-1) - (5*n-16)*(31250*n^9 - 400000*n^8 + 2154375*n^7 - 6337750*n^6 + 11073100*n^5 - 11721380*n^4 + 7379043*n^3 - 2629646*n^2 + 489456*n - 36000)*a(n-2) + (5*n-1)*(31250*n^9 - 556250*n^8 + 4241875*n^7 - 18056500*n^6 + 46858025*n^5 - 76033760*n^4 + 76116292*n^3 - 44628880*n^2 + 13702848*n - 1693440)*a(n-3) - (5*n-6)*(5*n-2)*(5*n-1)*(625*n^7 - 11375*n^6 + 86025*n^5 - 347305*n^4 + 798274*n^3 - 1025292*n^2 + 661408*n - 156480)*a(n-4) + (n-4)^4*(5*n-11)*(5*n-7)*(5*n-6)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-5). - Vaclav Kotesovec, Sep 23 2013
a(n) ~ c*d^n/n^2, where d = 3129.996806129131084... is the root of the equation -1 + 5*d - 10*d^2 + 10*d^3 - 3130*d^4 +d^5 = 0 and c = 0.05674890286773483081841276583916042181... - Vaclav Kotesovec, Sep 23 2013
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 61*x^2 + 38101*x^3 + 42394381*x^4 + ... appears to have integer coefficients. - Peter Bala, Jan 13 2016
EXAMPLE
G.f.: A(x) = 1 + 121*x + 114121*x^2 + 169417921*x^3 + 308238414121*x^4 +...
where
A(x) = 1/(1-x) + (5!/1!^5)*x/(1-x)^6 + (10!/2!^5)*x^2/(1-x)^11 + (15!/3!^5)*x^3/(1-x)^16 + (20!/4!^5)*x^4/(1-x)^21 + (25!/5!^5)*x^5/(1-x)^26 +... [Hanna]
Equivalently,
A(x) = 1/(1-x) + 120*x/(1-x)^6 + 113400*x^2/(1-x)^11 + 168168000*x^3/(1-x)^16 + 305540235000*x^4/(1-x)^21 + 623360743125120*x^5/(1-x)^26 +...+ A008978(n)*x^n/(1-x)^(5*n+1) +...
MAPLE
with(combinat):
a:= n-> add(multinomial(n+4*k, n-k, k$5), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[n+k, k]*Binomial[n+2*k, k]* Binomial[n+3*k, k]*Binomial[n+4*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 23 2013 *)
PROG
From Paul D. Hanna, Sep 22 2013: (Start)
(PARI) {a(n)=polcoeff(sum(m=0, n, (5*m)!/m!^5*x^m/(1-x+x*O(x^n))^(5*m+1)), n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k) *binomial(n+3*k, k)*binomial(n+4*k, k))}
for(n=0, 15, print1(a(n), ", "))
(End)
CROSSREFS
Column k = 5 of A229142.
Sequence in context: A232279 A202887 A195275 * A360504 A028463 A013749
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Apr 28 2003
STATUS
approved