login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360504
Concatenate the ternary strings for 1,2,...,n-1, n, n-1, ..., 2,1.
3
1, 121, 121021, 1210111021, 12101112111021, 121011122012111021, 1210111220212012111021, 12101112202122212012111021, 1210111220212210022212012111021, 1210111220212210010110022212012111021, 1210111220212210010110210110022212012111021, 1210111220212210010110211010210110022212012111021
OFFSET
1,2
COMMENTS
If the terms are read as ternary strings and converted to base 10, we get A260853. For example, a(3) = 121021_3 = 439_10, which is A260853(3). This is a prime. What is the next prime term?
If the terms are read as decimal numbers, which of them are primes? a(3) = 121021_10 is a decimal prime, but what is the next one? It is a surprise that 121021 is a prime in both base 3 and base 10.
EXAMPLE
To get a(3) we concatenate 1, 2, 10, 2, and 1, getting 121021.
MAPLE
t:= n-> (l-> parse(cat(seq(l[-i], i=1..nops(l)))))(convert(n, base, 3)):
a:= n-> parse(cat(map(t, [$1..n, n-i$i=1..n-1])[])):
seq(a(n), n=1..12); # Alois P. Heinz, Feb 17 2023
MATHEMATICA
Table[FromDigits[Flatten[Join[IntegerDigits[#, 3]&/@Range[n], IntegerDigits[#, 3]&/@ Range[ n-1, 1, -1]]]], {n, 20}] (* Harvey P. Dale, Oct 01 2023 *)
PROG
(Python)
from sympy.ntheory import digits
def a(n): return int("".join("".join(map(str, digits(k, 3)[1:])) for k in list(range(1, n+1))+list(range(n-1, 0, -1))))
print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 18 2023
(Python) # faster version for initial segment of sequence
from sympy.ntheory import digits
from itertools import count, islice
def agen(): # generator of terms
sf, sr = "", ""
for n in count(1):
sn = "".join(map(str, digits(n, 3)[1:]))
sf += sn
yield int(sf + sr)
sr = sn + sr
print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 18 2023
CROSSREFS
This is the ternary analog of A173426.
Sequence in context: A202887 A195275 A082489 * A028463 A013749 A178192
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Feb 17 2023
STATUS
approved