login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082488
a(n) = Sum_{k = 0..n} C(n,k) * C(n+k,k) * C(n+2*k,k) * C(n+3*k,k).
9
1, 25, 2641, 392641, 67982041, 12838867105, 2564949195985, 533008982952625, 114035552691160585, 24950692835328410305, 5557138347370070346601, 1255741805437716400557625, 287180884347761929741524361, 66343186345544102086872515761
OFFSET
0,2
COMMENTS
Diagonal of the rational function 1/(1-(x + y + z + w + x*y*z*w)). - Gheorghe Coserea, Jul 15 2016
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: Sum_{n>=0} (4*n)!/n!^4 * x^n / (1-x)^(4*n+1). - Paul D. Hanna, Sep 22 2013
Recurrence: n^3*(2*n-3)*(4*n-9)*(4*n-5)*a(n) = (4*n-9)*(4*n-3)*(520*n^4 - 1820*n^3 + 2109*n^2 - 905*n + 121)*a(n-1) - (192*n^6 - 1536*n^5 + 4748*n^4 - 7050*n^3 + 5065*n^2 - 1563*n + 171)*a(n-2) + (4*n-1)*(32*n^5 - 296*n^4 + 1040*n^3 - 1689*n^2 + 1209*n - 279)*a(n-3) - (n-3)^3*(2*n-1)*(4*n-5)*(4*n-1)*a(n-4). - Vaclav Kotesovec, Sep 23 2013
a(n) ~ c*d^n/(Pi^(3/2)*n^(3/2)), where d = 65 + 46*sqrt(2) + 2*sqrt(2*(1055 + 746*sqrt(2))) = 259.976980158726979... is the maximal positive root of the equation 1 - 4*d + 6*d^2 - 260*d^3 + d^4 = 0 and c = sqrt(8 + 5*sqrt(2) + sqrt(14*(11 + 8*sqrt(2))))/8 = 0.71529801573844067904424114047445568721... - Vaclav Kotesovec, Sep 23 2013, updated Jul 16 2016
G.f.: hypergeom([1/8, 3/8],[1],256*x/(1-x)^4)^2/(1-x). - Mark van Hoeij, Sep 23 2013
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 13*x^2 + 893*x^3 + 99125*x^4 + 13706093*x^5 + ... appears to have integer coefficients. - Peter Bala, Jan 13 2016
0 = x^2*(3*x+1)^2*(1-260*x+6*x^2-4*x^3+x^4)*y''' + 3*x*(3*x+1)*(1-390*x-378*x^2+8*x^3-15*x^4+6*x^5)*y'' + (1-836*x+133*x^2+768*x^3-69*x^4-60*x^5+63*x^6)*y' + (-25+397*x-378*x^2-6*x^3+3*x^4+9*x^5)*y, where y is the g.f. - Gheorghe Coserea, Jul 15 2016
EXAMPLE
G.f.: A(x) = 1 + 25*x + 2641*x^2 + 392641*x^3 + 67982041*x^4 + 12838867105*x^5 +...
where
A(x) = 1/(1-x) + (4!/1!^4)*x/(1-x)^5 + (8!/2!^4)*x^2/(1-x)^9 + (12!/3!^4)*x^3/(1-x)^13 + (16!/4!^4)*x^4/(1-x)^17 + (20!/5!^4)*x^5/(1-x)^21 +... [Hanna]
Equivalently,
A(x) = 1/(1-x) + 24*x/(1-x)^5 + 2520*x^2/(1-x)^9 + 369600*x^3/(1-x)^13 + 63063000*x^4/(1-x)^17 + 11732745024*x^5/(1-x)^21 +...+ A008977(n)*x^n/(1-x)^(4*n+1) +...
MAPLE
with(combinat):
a:= n-> add(multinomial(n+3*k, n-k, k$4), k=0..n):
seq(a(n), n=0..15); # Alois P. Heinz, Sep 23 2013
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[n+k, k]*Binomial[n+2*k, k]* Binomial[n+3*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 23 2013 *)
PROG
From Paul D. Hanna, Sep 22 2013: (Start)
(PARI) {a(n)=polcoeff(sum(m=0, n, (4*m)!/m!^4*x^m/(1-x+x*O(x^n))^(4*m+1)), n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)*binomial(n+2*k, k)*binomial(n+3*k, k))}
for(n=0, 15, print1(a(n), ", "))
(End)
(Magma) [&+[Binomial(n, k)*Binomial(n+k, k)*Binomial(n+2*k, k)*Binomial(n+3*k, k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Oct 16 2018
CROSSREFS
Cf. A081798.
Column k = 4 of A229142.
Related to diagonal of rational functions: A268545-A268555.
Sequence in context: A167036 A342107 A145246 * A363865 A209850 A014797
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Apr 28 2003
STATUS
approved