login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342107
a(n) = Sum_{k=0..n} (4*k)!/k!^4.
1
1, 25, 2545, 372145, 63435145, 11796180169, 2320539673225, 474838887231625, 100035931337622625, 21552788197602942625, 4726913659271173170145, 1051798742538350304851425, 236861100204680963085573025
OFFSET
0,2
COMMENTS
Partial sums of A008977.
In general, for m > 1, Sum_{k=0..n} (m*k)!/k!^m ~ m^(m*n + m + 1/2) / ((m^m - 1) * (2*Pi*n)^((m-1)/2)). - Vaclav Kotesovec, Feb 28 2021
FORMULA
a(n) ~ 2^(8*n + 15/2) / (255 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Feb 28 2021
D-finite with recurrence n^3*a(n) +(-257*n^3+384*n^2-176*n+24)*a(n-1) +8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-2)=0. - R. J. Mathar, Dec 04 2023
MAPLE
A342107 := proc(n)
add((4*k)!/k!^4, k=0..n) ;
end proc:
seq(A342107(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
MATHEMATICA
Table[Sum[(4*k)!/k!^4, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 28 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (4*k)!/k!^4);
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Seiichi Manyama, Feb 28 2021
STATUS
approved