login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188441
Partial sums of binomial(2n,n)*binomial(3n,n) (A006480).
5
1, 7, 97, 1777, 36427, 793183, 17946319, 417019279, 9882531049, 237755962549, 5788752753889, 142315748216929, 3527047510738129, 88005145583604529, 2208577811494332529, 55703557596868964209, 1411049022002884046539
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(3*k,k).
Recurrence: (n+2)^2*a(n+2)-(28*n^2+85*n+64)*a(n+1)+3*(9*n^2+27*n+20)*a(n) = 0.
G.f.: F(1/3,2/3;1;27*x)/(1-x), where F(a1,a2;b1;z) is a hypergeometric series.
a(n) ~ 3^(3*n+7/2) / (52*Pi*n). - Vaclav Kotesovec, Mar 02 2014
a(n) = hypergeom([1/3, 2/3], [1], 27) - hypergeom([1, n+4/3, n+5/3], [n+2, n+2], 27)*multinomial(n+1, n+1, n+1). - Vladimir Reshetnikov, Oct 12 2016
MATHEMATICA
Table[Sum[Binomial[2k, k]Binomial[3k, k], {k, 0, n}], {n, 0, 16}]
Round@Table[Hypergeometric2F1[1/3, 2/3, 1, 27] - HypergeometricPFQ[{1, n + 4/3, n + 5/3}, {n + 2, n + 2}, 27] Multinomial[n + 1, n + 1, n + 1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 12 2016 *)
Accumulate[Table[Binomial[2n, n]Binomial[3n, n], {n, 0, 20}]] (* Harvey P. Dale, Oct 27 2020 *)
PROG
(Maxima) makelist(sum(binomial(2*k, k)*binomial(3*k, k), k, 0, n), n, 0, 16);
(PARI) a(n) = sum(k=0, n, binomial(2*k, k)*binomial(3*k, k)); \\ Michel Marcus, Oct 13 2016
CROSSREFS
Cf. A006480.
Sequence in context: A370101 A218669 A371367 * A178808 A083083 A022007
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 14 2011
STATUS
approved