login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188440
Triangle T(n,k) read by rows: number of size-k antisymmetric subsets of {1,2,...,n}.
2
1, 1, 1, 2, 1, 2, 1, 4, 4, 1, 4, 4, 1, 6, 12, 8, 1, 6, 12, 8, 1, 8, 24, 32, 16, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 32, 1, 10, 40, 80, 80, 32, 1, 12, 60, 160, 240, 192, 64, 1, 12, 60, 160, 240, 192, 64, 1, 14, 84, 280, 560, 672, 448, 128, 1, 14, 84, 280
OFFSET
0,4
COMMENTS
A subset S of {1,2,...,n} is antisymmetric if x is an element of S implies n+1-x is not an element of S. In other words, the sum of any two elements of S does not equal n+1. For example, {1,2,5} is an antisymmetric subset of {1,2,3,4,5,6,7}. If n is odd, (n+1)/2 cannot be an element of an antisymmetric subset of {1,2,...,n}. (Note that for n=0, we define {1,...,n} to be the empty set, and thus T(0,0)=1 since the empty set is vacuously antisymmetric.)
We note, for example, that T(100,k) provides the number of possible size-k committees of the U.S. Senate in which no two members are from the same state.
Triangle, read by rows, A013609 rows repeated. - Philippe Deléham, Apr 09 2012
Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012
FORMULA
T(n,k) = 2^k*C(floor(n/2),k) where C(*,*) denotes a binomial coefficient.
Sum(T(n,k),k=0..floor(n/2)) = 3^floor(n/2) = A108411(n).
G.f. for columns(k fixed):(2t^2)^k/((1-t)*(1-t^2)^k).
T(n,k) = A152198(n,k)*2^k. - Philippe Deléham, Apr 09 2012
G.f.: (1+x)/(1-x^2-2*y*x^2). - Philippe Deléham, Apr 09 2012
T(n,k) = T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n.- Philippe Deléham, Apr 09 2012
EXAMPLE
Triangle T(n,k) initial values 0 <= k <= floor(n/2), n=0..13:
1
1
1 2
1 2
1 4 4
1 4 4
1 6 12 8
1 6 12 8
1 8 24 32 16
1 8 24 32 16
1 10 40 80 80 32
1 10 40 80 80 32
1 12 60 160 240 192 64
1 12 60 160 240 192 64
...
For n=7 and k=2, T(7,2)=12 since there are 12 antisymmetric size-2 subsets of {1,2,...,7}:
{1,2}, {1,3}, {1,5}, {1,6}, {2,3}, {2,5},
{2,7}, {3,6}, {3,7}, {5,6}, {5,7}, and {6,7}.
(1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:
1
1 0
1 2 0
1 2 0 0
1 4 4 0 0
1 4 4 0 0 0
1 6 12 8 0 0 0
1 6 12 8 0 0 0 0
1 8 24 32 16 0 0 0 0
1 8 24 32 16 0 0 0 0 0
1 10 40 80 80 32 0 0 0 0 0
1 10 40 80 80 32 0 0 0 0 0 0
1 12 60 160 240 192 64 0 0 0 0 0 0
1 12 60 160 240 192 64 0 0 0 0 0 0 0
- Philippe Deléham, Apr 09 2012
MAPLE
seq(seq(binomial(floor(n/2), k)*2^k, k=0..floor(n/2)), n=0..22);
MATHEMATICA
Table[ CoefficientList[(1 + 2*x)^n, x] , {n, 0, 7}, {2}] // Flatten (* Jean-François Alcover, Aug 19 2013, after Philippe Deléham *)
CROSSREFS
Cf. A108411, row sums of triangle T(n,k).
Sequence in context: A157333 A002852 A266081 * A216327 A099875 A079499
KEYWORD
nice,easy,nonn,tabf
AUTHOR
Dennis P. Walsh, Mar 31 2011
STATUS
approved