OFFSET
0,4
COMMENTS
A subset S of {1,2,...,n} is antisymmetric if x is an element of S implies n+1-x is not an element of S. In other words, the sum of any two elements of S does not equal n+1. For example, {1,2,5} is an antisymmetric subset of {1,2,3,4,5,6,7}. If n is odd, (n+1)/2 cannot be an element of an antisymmetric subset of {1,2,...,n}. (Note that for n=0, we define {1,...,n} to be the empty set, and thus T(0,0)=1 since the empty set is vacuously antisymmetric.)
We note, for example, that T(100,k) provides the number of possible size-k committees of the U.S. Senate in which no two members are from the same state.
Triangle, read by rows, A013609 rows repeated. - Philippe Deléham, Apr 09 2012
Triangle, with zeros omitted, given by (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012
LINKS
T. D. Noe, Rows n = 0..100, flattened
Dennis Walsh, Notes on antisymmetric subsets of {1,2,...,n}
FORMULA
T(n,k) = 2^k*C(floor(n/2),k) where C(*,*) denotes a binomial coefficient.
Sum(T(n,k),k=0..floor(n/2)) = 3^floor(n/2) = A108411(n).
G.f. for columns(k fixed):(2t^2)^k/((1-t)*(1-t^2)^k).
T(n,k) = A152198(n,k)*2^k. - Philippe Deléham, Apr 09 2012
G.f.: (1+x)/(1-x^2-2*y*x^2). - Philippe Deléham, Apr 09 2012
T(n,k) = T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n.- Philippe Deléham, Apr 09 2012
EXAMPLE
Triangle T(n,k) initial values 0 <= k <= floor(n/2), n=0..13:
1
1
1 2
1 2
1 4 4
1 4 4
1 6 12 8
1 6 12 8
1 8 24 32 16
1 8 24 32 16
1 10 40 80 80 32
1 10 40 80 80 32
1 12 60 160 240 192 64
1 12 60 160 240 192 64
...
For n=7 and k=2, T(7,2)=12 since there are 12 antisymmetric size-2 subsets of {1,2,...,7}:
{1,2}, {1,3}, {1,5}, {1,6}, {2,3}, {2,5},
{2,7}, {3,6}, {3,7}, {5,6}, {5,7}, and {6,7}.
(1, 0, -1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:
1
1 0
1 2 0
1 2 0 0
1 4 4 0 0
1 4 4 0 0 0
1 6 12 8 0 0 0
1 6 12 8 0 0 0 0
1 8 24 32 16 0 0 0 0
1 8 24 32 16 0 0 0 0 0
1 10 40 80 80 32 0 0 0 0 0
1 10 40 80 80 32 0 0 0 0 0 0
1 12 60 160 240 192 64 0 0 0 0 0 0
1 12 60 160 240 192 64 0 0 0 0 0 0 0
- Philippe Deléham, Apr 09 2012
MAPLE
seq(seq(binomial(floor(n/2), k)*2^k, k=0..floor(n/2)), n=0..22);
MATHEMATICA
Table[ CoefficientList[(1 + 2*x)^n, x] , {n, 0, 7}, {2}] // Flatten (* Jean-François Alcover, Aug 19 2013, after Philippe Deléham *)
CROSSREFS
KEYWORD
nice,easy,nonn,tabf
AUTHOR
Dennis P. Walsh, Mar 31 2011
STATUS
approved