login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266081
T(n,k)=Number of nXk integer arrays with each element equal to the number of horizontal and vertical neighbors differing from itself by exactly one.
7
1, 1, 1, 2, 1, 2, 1, 4, 4, 1, 1, 1, 4, 1, 1, 2, 1, 6, 6, 1, 2, 1, 4, 5, 5, 5, 4, 1, 1, 1, 12, 7, 7, 12, 1, 1, 2, 1, 10, 26, 29, 26, 10, 1, 2, 1, 4, 16, 23, 29, 29, 23, 16, 4, 1, 1, 1, 21, 35, 55, 78, 55, 35, 21, 1, 1, 2, 1, 31, 64, 115, 146, 146, 115, 64, 31, 1, 2, 1, 4, 42, 99, 221, 364, 466, 364
OFFSET
1,4
COMMENTS
Table starts
.1.1..2..1...1....2....1.....1......2......1.......1........2........1
.1.1..4..1...1....4....1.....1......4......1.......1........4........1
.2.4..4..6...5...12...10....16.....21.....31......42.......66.......89
.1.1..6..5...7...26...23....35.....64.....99.....161......276......431
.1.1..5..7..29...29...55...115....221....443.....851.....1659.....3318
.2.4.12.26..29...78..146...364....783...1773....4170.....9548....21795
.1.1.10.23..55..146..466..1155...3364...9229...25566....70308...196647
.1.1.16.35.115..364.1155..3907..12510..41683..136701...446548..1484311
.2.4.21.64.221..783.3364.12510..52773.196401..781997..3116201.12334789
.1.1.31.99.443.1773.9229.41683.196401.925875.4351555.20635583.96976290
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-3)
k=2: a(n) = a(n-3)
k=3: a(n) = a(n-1) +a(n-3) +a(n-6) -a(n-7) -a(n-9)
k=4: [order 63]
EXAMPLE
All solutions for n=4 k=4
..0..2..3..2....0..0..0..0....0..0..0..0....2..3..2..0....0..0..0..0
..0..3..4..3....2..3..2..0....0..2..3..2....3..4..3..0....0..0..0..0
..0..2..3..2....3..4..3..0....0..3..4..3....2..3..2..0....0..0..0..0
..0..0..0..0....2..3..2..0....0..2..3..2....0..0..0..0....0..0..0..0
CROSSREFS
Sequence in context: A208548 A157333 A002852 * A188440 A216327 A099875
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 20 2015
STATUS
approved