login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266083
a(n) = Sum_{k = 0..n - 1} (a(n - 1) + k) for n>0, a(0) = 1.
2
1, 1, 3, 12, 54, 280, 1695, 11886, 95116, 856080, 8560845, 94169350, 1130032266, 14690419536, 205665873595, 3084988104030, 49359809664600, 839116764298336, 15104101757370201, 286977933390033990, 5739558667800679990, 120530732023814280000, 2651676104523914160231
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Incomplete Gamma Function
FORMULA
a(n) = (2*n! + exp(1)*n*(n - 1)*Gamma(n - 1, 1))/2, where Gamma(a, x) is the incomplete gamma function.
a(n + 1) - a(n)*(n + 1) = A000217(n).
a(n) = n*a(n-1) + binomial(n,2). - G. C. Greubel, Dec 22 2015
EXAMPLE
a(0) = 1;
a(1) = 1 + 0 = 1;
a(2) = 1 + 0 + 1 + 1 = 3;
a(3) = 3 + 0 + 3 + 1 + 3 + 2 = 12;
a(4) = 12 + 0 + 12 + 1 + 12 + 2 + 12 + 3 = 54;
a(5) = 54 + 0 + 54 + 1 + 54 + 2 + 54 + 3 + 54 + 4 = 280, etc.
MATHEMATICA
Table[(2 n! + Exp[1] n (n - 1) Gamma[n - 1, 1])/2, {n, 0, 22}]
RecurrenceTable[{a[n] == n*a[n - 1] + Binomial[n, 2], a[0] == 1}, a, {n, 0, 20}] (* G. C. Greubel, Dec 22 2015 *)
PROG
(PARI) a(n) = (2*n! + exp(1)*n*(n-1)*incgam(n-1, 1))\/2
CROSSREFS
Cf. A000217, A038155 (for a(0) = 0).
Sequence in context: A270489 A335819 A263853 * A245374 A052673 A180589
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 21 2015
STATUS
approved