login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k = 0..n - 1} (a(n - 1) + k) for n>0, a(0) = 1.
2

%I #10 Jul 26 2016 20:43:56

%S 1,1,3,12,54,280,1695,11886,95116,856080,8560845,94169350,1130032266,

%T 14690419536,205665873595,3084988104030,49359809664600,

%U 839116764298336,15104101757370201,286977933390033990,5739558667800679990,120530732023814280000,2651676104523914160231

%N a(n) = Sum_{k = 0..n - 1} (a(n - 1) + k) for n>0, a(0) = 1.

%H G. C. Greubel, <a href="/A266083/b266083.txt">Table of n, a(n) for n = 0..320</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">Incomplete Gamma Function</a>

%F a(n) = (2*n! + exp(1)*n*(n - 1)*Gamma(n - 1, 1))/2, where Gamma(a, x) is the incomplete gamma function.

%F a(n + 1) - a(n)*(n + 1) = A000217(n).

%F a(n) = n*a(n-1) + binomial(n,2). - _G. C. Greubel_, Dec 22 2015

%e a(0) = 1;

%e a(1) = 1 + 0 = 1;

%e a(2) = 1 + 0 + 1 + 1 = 3;

%e a(3) = 3 + 0 + 3 + 1 + 3 + 2 = 12;

%e a(4) = 12 + 0 + 12 + 1 + 12 + 2 + 12 + 3 = 54;

%e a(5) = 54 + 0 + 54 + 1 + 54 + 2 + 54 + 3 + 54 + 4 = 280, etc.

%t Table[(2 n! + Exp[1] n (n - 1) Gamma[n - 1, 1])/2, {n, 0, 22}]

%t RecurrenceTable[{a[n] == n*a[n - 1] + Binomial[n, 2], a[0] == 1}, a, {n, 0, 20}] (* _G. C. Greubel_, Dec 22 2015 *)

%o (PARI) a(n) = (2*n! + exp(1)*n*(n-1)*incgam(n-1, 1))\/2

%Y Cf. A000217, A038155 (for a(0) = 0).

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Dec 21 2015