login
A052673
a(n) = 3*n*n!.
4
0, 3, 12, 54, 288, 1800, 12960, 105840, 967680, 9797760, 108864000, 1317254400, 17244057600, 242853811200, 3661488230400, 58845346560000, 1004293914624000, 18140058832896000, 345728180109312000
OFFSET
0,2
LINKS
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
E.g.f.: 3*x/(1-x)^2.
Recurrence: a(0)=0, a(1)=3, (n-1)*a(n) = n^2*a(n-1).
a(n) = A122972(n+2) - A122972(n) for n > 0. - Reinhard Zumkeller, Sep 21 2006
For n>0: a(n) = A083746(n+2). - Reinhard Zumkeller, Apr 14 2007
G.f.: 3*Hypergeometric2F0([2,2], [], x). - G. C. Greubel, Jun 12 2022
MAPLE
spec := [S, {S=Prod(Sequence(Z), Sequence(Z), Union(Z, Z, Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[3 n n!, {n, 0, 20}] (* Harvey P. Dale, Feb 12 2017 *)
PROG
(Magma) [3*(Factorial(n+1)-Factorial(n)): n in [0..30]]; // G. C. Greubel, Jun 12 2022
(SageMath) [3*n*factorial(n) for n in (0..30)] # G. C. Greubel, Jun 12 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved