OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..350
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 623
FORMULA
E.g.f.: (1 - x)/(1 - 5*x).
D-finite Recurrence: a(0)=1, a(1)=4, a(n) = 5*n*a(n-1).
a(n) = 4*5^(n-1)*n!, n>0.
a(n) = (4/5) * A052562(n).
a(n) = n!*A005054(n). - R. J. Mathar, Jun 03 2022
G.f.: (4/5)*(Hypergeometric2F0([1, 1], [], 5*x) + 1/4). - G. C. Greubel, Jun 12 2022
MAPLE
spec := [S, {S=Sequence(Prod(Sequence(Z), Union(Z, Z, Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[(4/5)*(5^n*n! + Boole[n==0]/4), {n, 0, 50}] (* G. C. Greubel, Jun 12 2022 *)
With[{nn=20}, CoefficientList[Series[(1-x)/(1-5x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 31 2023 *)
PROG
(SageMath) [4*factorial(n)*5^(n-1) + bool(n==0)/5 for n in (0..40)] # G. C. Greubel, Jun 12 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved