login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052675
Expansion of e.g.f. (1-x)/(1-5*x).
1
1, 4, 40, 600, 12000, 300000, 9000000, 315000000, 12600000000, 567000000000, 28350000000000, 1559250000000000, 93555000000000000, 6081075000000000000, 425675250000000000000, 31925643750000000000000
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1 - x)/(1 - 5*x).
D-finite Recurrence: a(0)=1, a(1)=4, a(n) = 5*n*a(n-1).
a(n) = 4*5^(n-1)*n!, n>0.
a(n) = (4/5) * A052562(n).
a(n) = n!*A005054(n). - R. J. Mathar, Jun 03 2022
G.f.: (4/5)*(Hypergeometric2F0([1, 1], [], 5*x) + 1/4). - G. C. Greubel, Jun 12 2022
MAPLE
spec := [S, {S=Sequence(Prod(Sequence(Z), Union(Z, Z, Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[(4/5)*(5^n*n! + Boole[n==0]/4), {n, 0, 50}] (* G. C. Greubel, Jun 12 2022 *)
With[{nn=20}, CoefficientList[Series[(1-x)/(1-5x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 31 2023 *)
PROG
(SageMath) [4*factorial(n)*5^(n-1) + bool(n==0)/5 for n in (0..40)] # G. C. Greubel, Jun 12 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved