login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052674
Expansion of e.g.f. (1-x)/(1-3*x-2*x^2+2*x^3).
1
1, 2, 16, 156, 2160, 36720, 753120, 17992800, 491500800, 15102339840, 515630707200, 19365156518400, 793401964185600, 35214960849868800, 1683239666985676800, 86204093846846976000, 4709107007890661376000, 273324248772505362432000, 16797372435596048744448000
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1 - x)/((1 + x)*(1 - 4*x + 2*x^2)).
Recurrence: a(0)=1, a(1)=2, a(2)=16, a(n) = 3*n*a(n-1) + 2*n*(n-1)*a(n-2) - 2*n*(n-1)*(n-2)*a(n-3).
a(n) = (n!/98)*Sum_{alpha=RootOf(1 -3*Z -2*Z^2 +2*Z^3)} (13 + 25*alpha - 16*alpha^2)*alpha^(-1-n).
a(n) = n!*A052543(n). - R. J. Mathar, Nov 27 2011
a(n) = (n!/7)*(2*(-1)^n + 2^(n/2)*( 5*ChebyshevU(n, sqrt(2)) - 2*sqrt(2)*ChebyshevU(n-1, sqrt(2)) )). - G. C. Greubel, Jun 12 2022
MAPLE
spec := [S, {S=Sequence(Prod(Union(Z, Z), Union(Z, Sequence(Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[(n!/7)*(2*(-1)^n + 2^(n/2)*(5*ChebyshevU[n, Sqrt[2]] - 2*Sqrt[2]*ChebyshevU[n - 1, Sqrt[2]])), {n, 0, 30}] (* G. C. Greubel, Jun 12 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( (1-x)/((1+x)*(1-4*x+2*x^2)) ))); // G. C. Greubel, Jun 12 2022
(SageMath) [factorial(n)*(2^(n/2)*(5*chebyshev_U(n, sqrt(2)) - 2*sqrt(2)*chebyshev_U(n-1, sqrt(2))) + 2*(-1)^n)/7 for n in (0..30)] # G. C. Greubel, Jun 12 2022
CROSSREFS
Sequence in context: A012391 A012387 A009518 * A259706 A309440 A226012
KEYWORD
easy,nonn,changed
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved