OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..365
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 625
FORMULA
E.g.f.: (1-x)/(1-4*x+x^2).
Recurrence: a(0)=1, a(1)=3, a(n+2) = 4*(n+2)*a(n+1) - (n+2)*(n+1)*a(n).
a(n) = (n!/6)*Sum_{alpha=RootOf(1 -4*Z +Z^2)} (1 + alpha)*alpha^(-1-n).
a(n) = n!*A079935(n). - R. J. Mathar, Nov 27 2011
a(n) = (-1)^n * n! * ChebyshevU(2*n, i/sqrt(2)). - G. C. Greubel, Jun 11 2022
MAPLE
spec := [S, {S=Sequence(Union(Z, Prod(Sequence(Z), Union(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x)/(1-4x+x^2), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 28 2016 *)
PROG
(Magma) [n le 2 select 3^(n-1) else 4*(n-1)*Self(n-1) - (n-1)*(n-2)*Self(n-2): n in [1..31]]; // G. C. Greubel, Jun 11 2022
(SageMath) [factorial(n)*sum( binomial(2*n-k, k)*2^(n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 11 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved