login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079935 a(n) = 4*a(n-1) - a(n-2) with a(1) = 1, a(2) = 3. 22
1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
See A001835 for another version.
Greedy frac multiples of sqrt(3): a(1)=1, Sum_{n>0} frac(a(n)*x)) < 1 at x=sqrt(3).
The n-th greedy frac multiple of x is the smallest integer that does not cause Sum_{k=1..n} frac(a(k)*x) to exceed unity; an infinite number of terms appear as the denominators of the convergents to the continued fraction of x.
Binomial transform of A002605. - Paul Barry, Sep 17 2003
In general, Sum_{k=0..n} binomial(2n-k,k)*j^(n-k) = (-1)^n* U(2n, i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
The Hankel transform of this sequence is [1,2,0,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
From Richard Choulet, May 09 2010: (Start)
This sequence is a particular case of the following situation:
a(0)=1, a(1)=a, a(2)=b with the recurrence relation a(n+3) = (a(n+2)*a(n+1)+q)/a(n)
where q is given in Z to have Q = (a*b^2 + q*b + a + q)/(a*b) itself in Z.
The g.f is f: f(z) = (1 + a*z + (b-Q)*z^2 + (a*b + q - a*Q)*z^3)/(1 - Q*z^2 + z^4);
so we have the linear recurrence: a(n+4) = Q*a(n+2) - a(n).
The general form of a(n) is given by:
a(2*m) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (b-Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p) and
a(2*m+1) = a*Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (a*b+q-a*Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p).
(End)
x-values in the solution to 3*x^2 - 2 = y^2. - Sture Sjöstedt, Nov 25 2011
From Wolfdieter Lang, Oct 12 2020: (Start)
[X(n) = S(n, 4) - S(n-1, 4), Y(n) = X(n-1)] gives all positive solutions of X^2 + Y^2 - 4*X*Y = -2, for n = -oo..+oo, where the Chebyshev S-polynomials are given in A049310, with S(-1, 0) = 0, and S(-|n|, x) = - S(|n|-2, x), for |n| >= 2.
This binary indefinite quadratic form has discriminant D = +12. There is only this family representing -2 properly with X and Y positive, and there are no improper solutions.
See also the preceding comment by Sture Sjöstedt.
See the formula for a(n) = X(n-1), for n >= 1, in terms of S-polynomials below.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
a(n) is also the output of Tesler's formula for the number of perfect matchings of an m x n Mobius band where m and n are both even, specialized to m=2. (The twist is on the length-n side.) - Sarah-Marie Belcastro, Feb 15 2022
LINKS
Dalen Dockery, Marie Jameson, and Samuel Wilson, d-Fold Partition Diamonds, arXiv:2307.02579 [math.NT], 2023.
Tanya Khovanova, Recursive Sequences
Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), pp. 609-640.
G. Tesler, Matchings in graphs on non-orientable surfaces, Journal of Combinatorial Theory B, 78(2000), 198-231.
FORMULA
For n > 0, a(n) = ceiling( (2+sqrt(3))^n/(3+sqrt(3)) ).
From Paul Barry, Sep 17 2003: (Start)
G.f.: (1-x)/(1-4*x+x^2).
E.g.f.: exp(2*x)*(sinh(sqrt(3)*x)/sqrt(3) + cosh(sqrt(3)*x)).
a(n) = ( (3+sqrt(3))*(2+sqrt(3))^n + (3-sqrt(3))*(2-sqrt(3))^n )/6 (offset 0). (End)
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*2^(n-k). - Paul Barry, Jan 22 2005 [offset 0]
a(n) = (-1)^n*U(2*n, i*sqrt(2)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005 [offset 0]
a(n) = Jacobi_P(n,-1/2,1/2,2)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006 [offset 0]
a(n) = sqrt(2+(2-sqrt(3))^(2*n-1) + (2+sqrt(3))^(2*n-1))/sqrt(6). - Gerry Martens, Jun 05 2015
a(n) = (1/2 + sqrt(3)/6)*(2-sqrt(3))^n + (1/2 - sqrt(3)/6)*(2+sqrt(3))^n. - Robert Israel, Jun 05 2015
a(n) = S(n-1,4) - S(n-2,4) = (-1)^(n-1)*S(2*(n-1), i*sqrt(2)), with Chebyshev S-polynomials (A049310), the imaginary unit i, S(-1, x) = 0, for n >= 1. See also the formula above by Paul Barry (with offset 0). - Wolfdieter Lang, Oct 12 2020
a(n) = sqrt(2/3)*cosh((-1 - 2*n) arccsch(sqrt(2))), where arccsch is the inverse hyperbolic cosecant function (with offset 0). - Peter Luschny, Oct 13 2020
EXAMPLE
a(4) = 41 since frac(1*x) + frac(3*x) + frac(11*x) + frac(41*x) < 1, while frac(1*x) + frac(3*x) + frac(11*x) + frac(k*x) > 1 for all k > 11 and k < 41.
MAPLE
f:= gfun:-rectoproc({a(n) = 4*a(n-1) - a(n-2), a(1)=1, a(2)=3}, a(n), remember):
seq(f(n), n=1..30); # Robert Israel, Jun 05 2015
MATHEMATICA
a[n_] := (MatrixPower[{{1, 2}, {1, 3}}, n].{{1}, {1}})[[1, 1]]; Table[ a[n], {n, 0, 23}]] (* Robert G. Wilson v, Jan 13 2005 *)
LinearRecurrence[{4, -1}, {1, 3}, 30] (* or *) CoefficientList[Series[ (1-x)/(1-4x+x^2), {x, 0, 30}], x] (* Harvey P. Dale, Apr 26 2011 *)
a[n_] := Sqrt[2/3] Cosh[(-1 - 2 n) ArcCsch[Sqrt[2]]];
Table[Simplify[a[n-1]], {n, 1, 12}] (* Peter Luschny, Oct 13 2020 *)
PROG
(Sage) [lucas_number1(n, 4, 1)-lucas_number1(n-1, 4, 1) for n in range(1, 25)] # Zerinvary Lajos, Apr 29 2009
(Haskell)
a079935 n = a079935_list !! (n-1)
a079935_list =
1 : 3 : zipWith (-) (map (4 *) $ tail a079935_list) a079935_list
-- Reinhard Zumkeller, Aug 14 2011
(Magma) I:=[1, 3]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 06 2015
(PARI) a(n)=([0, 1; -1, 4]^(n-1)*[1; 3])[1, 1] \\ Charles R Greathouse IV, Mar 18 2017
(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-4*x+x^2)) \\ G. C. Greubel, Feb 25 2019
CROSSREFS
Cf. A002530 (denominators of convergents to sqrt(3)), A079934, A079936, A001353.
Cf. A001835 (same except for the first term).
Row 4 of array A094954.
Cf. similar sequences listed in A238379.
Sequence in context: A077831 A032952 A001835 * A281593 A113437 A076540
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre and Paul D. Hanna, Jan 20 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 01:27 EST 2023. Contains 367717 sequences. (Running on oeis4.)