login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076540
Number of branches in all ordered trees with n edges.
7
1, 3, 11, 41, 154, 582, 2211, 8437, 32318, 124202, 478686, 1849498, 7161556, 27784460, 107980515, 420300045, 1638238710, 6393535170, 24980504010, 97704407790, 382509199020, 1498824792660, 5877754713870, 23067328421826, 90590960500524, 356002519839652
OFFSET
1,2
COMMENTS
Row sums of triangle A136535. - Gary W. Adamson, Jan 04 2008
The average of the n terms a(1),...,a(n) is C(n) = A000108(n), the n-th Catalan number. - Franklin T. Adams-Watters, May 20 2010
Binomial transform of A005717. - Peter Luschny, Jan 17 2012
a(n) is the number of parking functions of size n avoiding the patterns 213, 312, and 321. - Lara Pudwell, Apr 10 2023
LINKS
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
J. Riordan, Enumeration of plane trees by branches and endpoints, J. Combinat. Theory, Ser A, 19, 214-222, 1975.
Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
FORMULA
a(n) = (3*n^2-2*n+1)*binomial(2*n, n)/(2*(n+1)*(2*n-1)).
G.f.: (1-z)*(C-1)/sqrt(1-4*z), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) = binomial(2n-1, n-2) + binomial(2n-2, n-1). - David Callan, Nov 06 2003
a(n+1) = [x^n](1 + x + x^2)*(1 + x)^(2*n) = binomial(2*n,n) + binomial(2*n,n-1) + binomial(2*n,n-2). - Peter Bala, Jun 15 2015
D-finite with recurrence (n+1)*a(n) +(-7*n+1)*a(n-1) +2*(7*n-12)*a(n-2) +4*(-2*n+7)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(3)=11 because the five ordered trees with 3 edges have 1+3+2+2+3 = 11 branches altogether.
MATHEMATICA
Table[Binomial[2 n, n] + Binomial[2 n, n-1] + Binomial[2 n, n-2], {n, 0, 30}] (* Vincenzo Librandi, Jun 17 2015 *)
PROG
(PARI) vector(30, n, binomial(2*n-1, n-2)+binomial(2*n-2, n-1)) \\ Michel Marcus, Jun 17 2015
(Magma) [Binomial(2*n, n)+Binomial(2*n, n-1)+Binomial(2*n, n-2): n in [0..30]]; // Vincenzo Librandi, Jun 17 2015
CROSSREFS
First differences of A001791. First differences are in A073663.
Sequence in context: A079935 A281593 A113437 * A196472 A258471 A176085
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 18 2002
STATUS
approved