OFFSET
1,3
COMMENTS
a(n) + b(n) = n and as n -> +infinity, a(n)/b(n) converges to Pi. For all n, a(n)/b(n) < Pi.
FORMULA
a(1) = 0, b(n) = n - a(n), if (a(n) + 1)/b(n) < Pi, then a(n+1) = a(n) + 1, otherwise a(n+1) = a(n).
a(n) = floor(n*Pi/(Pi+1)). - Vladeta Jovovic, Oct 04 2003
EXAMPLE
a(7)= 5 so b(7) = 7 - 5 = 2.
a(8) = 6 because (a(7) + 1)/b(7) = 6/2 which is < Pi. So b(8) = 8 - 6 = 2.
a(9) = 6 because (a(8) + 1)/b(8) = 7/2 which is not < Pi.
MATHEMATICA
Array[Floor[# Pi/(Pi + 1)] &, 73] (* Michael De Vlieger, Jan 11 2018 *)
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Robert A. Stump (bee_ess107(AT)msn.com), Oct 18 2002
STATUS
approved