login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076536
Image of n at the third step in the 3x+1 Problem: syr(3,n).
10
1, 2, 16, 4, 4, 5, 34, 1, 7, 8, 52, 10, 10, 11, 70, 2, 13, 14, 88, 16, 16, 17, 106, 3, 19, 20, 124, 22, 22, 23, 142, 4, 25, 26, 160, 28, 28, 29, 178, 5, 31, 32, 196, 34, 34, 35, 214, 6, 37, 38, 232, 40, 40, 41, 250, 7, 43, 44, 268, 46, 46, 47, 286, 8, 49, 50, 304, 52, 52, 53
OFFSET
1,2
COMMENTS
Also known as the Collatz Problem, Syracuse Algorithm or Hailstone Problem. Let syr(m,n) be the image of n at the m-th step. for m=3, k>=0 we get: syr(3,8k)=k, syr(3,8k+1)=6k+1, syr(3,8k+2)=6k+2, syr(3,8k+3)=36k+16, syr(3,8k+4)=6k+4, syr(3,8k+5)=6k+4, syr(3,8k+6)=6k+5, syr(3,8k+7)=36k+34.
REFERENCES
David Wells, Penguin Dictionary of Curious and Interesting Numbers.
FORMULA
G.f.: x*(1 + 2*x + 16*x^2 + 4*x^3 + 4*x^4 + 5*x^5 + 34*x^6 + x^7 + 5*x^8 + 4*x^9 + 20*x^10 + 2*x^11 + 2*x^12 + x^13 + 2*x^14)/(1 - x^8)^2.
a(n) = (1/64)*(103*n + 60 + i^n*(36*i - n*(5-60*i)) - i^(2n)*(65*n+28) - i^(3n)(36*i+n*(5+60*i)) - i^(n/2)*(8+5n)*(1 + i^n + i^(2n) + i^(3n))). - Federico Provvedi, Nov 23 2021
EXAMPLE
1->4->2->1; 2->1->4->2; 3->10->5->16; ...
MATHEMATICA
Rest[CoefficientList[Series[(x +2x^2 +16x^3 +4x^4 +4x^5 +5x^6 +34x^7 + x^8 +5x^9 +4x^10 +20x^11 +2x^12 +2x^13 +x^14 +2x^15)/(1-x^8)^2, {x, 0, 80}], x]] (* G. C. Greubel, Oct 16 2018 *)
PROG
(PARI) x='x+O('x^80); Vec(x*(1 +2*x +16*x^2 +4*x^3 +4*x^4 +5*x^5 +34*x^6 +x^7 +5*x^8 +4*x^9 +20*x^10 +2*x^11 +2*x^12 +x^13 +2*x^14)/(1-x^8)^2) \\ G. C. Greubel, Oct 16 2018
(Magma) m:=80; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 +2*x +16*x^2 +4*x^3 +4*x^4 +5*x^5 +34*x^6 +x^7 +5*x^8 +4*x^9 +20*x^10 +2*x^11 +2*x^12 +x^13 +2*x^14)/(1-x^8)^2)); // G. C. Greubel, Oct 16 2018
CROSSREFS
Cf. A006370 (n at step 1), A075884 (n at step 2).
Column k=3 of A347270.
Sequence in context: A095860 A070654 A036164 * A110009 A232503 A348007
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Oct 18 2002
STATUS
approved