The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347270 Square array T(n,k) in which row n lists the 3x+1 sequence starting at n, read by antidiagonals upwards, with n >= 1 and k >= 0. 47
 1, 2, 4, 3, 1, 2, 4, 10, 4, 1, 5, 2, 5, 2, 4, 6, 16, 1, 16, 1, 2, 7, 3, 8, 4, 8, 4, 1, 8, 22, 10, 4, 2, 4, 2, 4, 9, 4, 11, 5, 2, 1, 2, 1, 2, 10, 28, 2, 34, 16, 1, 4, 1, 4, 1, 11, 5, 14, 1, 17, 8, 4, 2, 4, 2, 4, 12, 34, 16, 7, 4, 52, 4, 2, 1, 2, 1, 2, 13, 6, 17, 8, 22 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This array gives all 3x+1 sequences. The 3x+1 or Collatz problem is described in A006370. Column k gives the image of n at the k-th step. This infinite square array contains the irregular triangles A070165, A235795 and A347271. For a piping diagram of the 3x+1 problem see A235800. LINKS Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened) J. C. Lagarias, The 3x+1 Problem: An Overview, arXiv:2111.02635 [math.NT], 2021. EXAMPLE The corner of the square array begins: 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, ... 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, ... 3,10, 5,16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, ... 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, ... 5,16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, ... 6, 3,10, 5,16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, ... 7,22,11,34,17,52,26,13,40,20,10, 5,16, 8, 4, 2, 1, 4, 2, 1, ... 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, ... 9,28,14, 7,22,11,34,17,52,26,13,40,20,10, 5,16, 8, 4, 2, 1, ... 10, 5,16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, ... 11,34,17,52,26,13,40,20,10, 5,16, 8, 4, 2, 1, 4, 2, 1, 4, 2, ... 12, 6, 3,10, 5,16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, ... 13,40,20,10, 5,16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, ... 14, 7,22,11,34,17,52,26,13,40,20,10, 5,16, 8, 4, 2, 1, 4, 2, ... ... MAPLE T:= proc(n, k) option remember; `if`(k=0, n, (j-> `if`(j::even, j/2, 3*j+1))(T(n, k-1))) end: seq(seq(T(d-k, k), k=0..d-1), d=1..20); # Alois P. Heinz, Aug 25 2021 MATHEMATICA T[n_, k_] := T[n, k] = If[k == 0, n, Function[j, If[EvenQ[j], j/2, 3*j + 1]][T[n, k - 1]]]; Table[Table[T[d - k, k], {k, 0, d - 1}], {d, 1, 20}] // Flatten (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *) CROSSREFS Main diagonal gives A347272. Parity of this sequence is A347283. Largest value in row n gives A056959. Number of nonpowers of 2 in row n gives A208981. Some rows n are: A153727 (n=1), A033478 (n=3), A033479 (n=9), A033480 (n=15), A033481 (n=21), A008884 (n=27), A008880 (n=33), A008878 (n=39), A008883 (n=51), A008877 (n=57), A008874 (n=63), A258056 (n=75), A258098 (n=79), A008876 (n=81), A008879 (n=87), A008875 (n=95), A008873 (n=97), A008882 (n=99), A245671 (n=1729). First four columns k are: A000027 (k=0), A006370 (k=1), A075884 (k=2), A076536 (k=3). Cf. A006877, A014682, A057716, A070165, A078719, A135282, A235795, A235800, A235801, A347265, A347267, A347268, A347269, A347271, A347519. Sequence in context: A317612 A070402 A125941 * A275117 A243141 A243207 Adjacent sequences: A347267 A347268 A347269 * A347271 A347272 A347273 KEYWORD nonn,tabl AUTHOR Omar E. Pol, Aug 25 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 01:27 EST 2022. Contains 358711 sequences. (Running on oeis4.)