The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070402 a(n) = 2^n mod 5. 7
 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Periodic with period 4: [1, 2, 4, 3]. - Washington Bomfim, Nov 23 2010 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-1,1). FORMULA From Paolo P. Lava, Feb 24 2010: (Start) a(n) = (1/12)*(11*(n mod 4) + 8*((n+1) mod 4)-((n+2) mod 4) + 2*((n+3) mod 4)). a(n) = (5/2) - (1/4)*((3-i)*i^n-(3+i)*(-i)^n), with i=sqrt(-1). (End) From R. J. Mathar, Apr 13 2010: (Start) a(n) = a(n-1) - a(n-2) + a(n-3). G.f.: (1 + x + 3*x^2) / ((1-x)*(1+x^2)). (End) From Washington Bomfim, Nov 23 2010: (Start) a(n) = 1 + (15*r^2 - 5*r - 4*r^3)/6, where r = n mod 4. a(n) = A000689(n) - 5*floor(((n-1) mod 4)/2) for n>0. (End) E.g.f.: (1/2)*(5*exp(x) - 3*cos(x) - sin(x)). - G. C. Greubel, Mar 19 2016 MAPLE A070402 := proc(n) op((n mod 4)+1, [1, 2, 4, 3]) ; end proc: # R. J. Mathar, Feb 05 2011 MATHEMATICA PadRight[{}, 100, {1, 2, 4, 3}] (* or *) CoefficientList[Series[(1 + 2 x + 4 x^2 + 3 x^3) / (1 - x^4), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 25 2016 *) PowerMod[2, Range[0, 120], 5] (* Harvey P. Dale, Sep 16 2020 *) PROG (Sage) [power_mod(2, n, 5) for n in range(0, 105)] # Zerinvary Lajos, Jun 08 2009 (PARI) for(n=0, 80, x=n%4; print1(1 + (15*x^2 -5*x -4*x^3)/6, ", ")) \\ Washington Bomfim, Nov 23 2010 (Magma) [Modexp(2, n, 5): n in [0..100]]; // Bruno Berselli, Mar 23 2016 (GAP) List([0..83], n->PowerMod(2, n, 5)); # Muniru A Asiru, Feb 01 2019 CROSSREFS Cf. A173635. Sequence in context: A229802 A106581 A317612 * A125941 A347270 A275117 Adjacent sequences: A070399 A070400 A070401 * A070403 A070404 A070405 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)