login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008884
3x+1 sequence starting at 27.
13
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079
OFFSET
0,1
COMMENTS
27=A060412(4); a(A006577(27))=a(111)=1; a(n)=A161021(n+59) for n with 103<=n<=111. - Reinhard Zumkeller, Jun 03 2009
At step 109 enters the loop 4 2 1 4 2 1 4 2 1 ... - N. J. A. Sloane, Jul 27 2019
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, E16.
H.-O. Peitgen et al., Chaos and Fractals, Springer, p. 33.
LINKS
F. Oort, Prime numbers, 2013, ICCM Notices, Talk at Academia Sinica and National Taiwan University, 17-XII-2012.
FORMULA
a(0) = 27, a(n) = 3*a(n-1)+1 if a(n-1) is odd, a(n) = a(n-1)/2 if a(n-1) is even. - Vincenzo Librandi, Dec 24 2010; corrected by Klaus Brockhaus, Dec 25 2010
MAPLE
f := proc(n) option remember; if n = 0 then 27; elif f(n-1) mod 2 = 0 then f(n-1)/2 else 3*f(n-1)+1; fi; end;
MATHEMATICA
NestList[If[EvenQ[#], #/2, 3#+1]&, 27, 70] (* Harvey P. Dale, Jun 30 2011 *)
PROG
(Magma) [ n eq 1 select 27 else IsOdd(Self(n-1)) select 3*Self(n-1)+1 else Self(n-1) div 2: n in [1..70] ]; // Klaus Brockhaus, Dec 25 2010
(PARI) Collatz(n, lim=0)={
my(c=n, e=0, L=List(n)); if(lim==0, e=1; lim=n*10^6);
for(i=1, lim, if(c%2==0, c=c/2, c=3*c+1); listput(L, c); if(e&&c==1, break));
return(Vec(L)); }
print(Collatz(27)) \\ A008884 (from 27 to the first 1)
\\ Anatoly E. Voevudko, Mar 26 2016
CROSSREFS
Row 27 of A347270.
Sequence in context: A292872 A057609 A255624 * A031455 A045004 A042432
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
STATUS
approved