login
A057609
Powers of a prime lucky number (A031157) but excluding lucky numbers (A000959).
1
27, 81, 243, 343, 1849, 2197, 2401, 4489, 5329, 6241, 6561, 16129, 16807, 19683, 22801, 26569, 28561, 37249, 44521, 49729, 58081, 59049, 79507, 80089, 94249, 109561, 117649, 134689, 177147, 177241, 187489, 214369, 237169, 361201, 371293, 375769, 383161, 389017
OFFSET
1,1
COMMENTS
Up to 10^7, terms are 3^3, 3^4, 3^5, 3^8, 3^9, 3^10, 3^11, 3^12, 3^13, 7^3, 7^4, 7^5, 7^6, 13^3, 13^4, 13^5, 13^6, 31^4, 43^2, 43^3, 43^4, 67^2, ..., . - Robert G. Wilson v, May 12 2006
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..825 (terms < 4*10^9)
EXAMPLE
In the first 23 terms of A000959, {1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99}, 3 is a prime lucky number (A031157), and 3^2 is also a lucky number, but 3^3=27 and 3^4=81 are not lucky numbers, so they are terms of this sequence.
MATHEMATICA
lst = Range[1, 2*10^6, 2]; i = 2; While[i <= (len = Length[lst]) && (k = lst[[i]]) <= len, lst = Drop[lst, {k, len, k}]; i++ ]; m = Last@ lst; Complement[ Reap[ Do[ If[x^2 > m, Break[]]; If[PrimeQ[x], y = x^2; While[y <= m, Sow@ y; y *= x]], {x, lst}]] [[2, 1]], lst] (* Robert G. Wilson v, May 12 2006, corrected by Giovanni Resta, May 10 2020 *)
CROSSREFS
Sequence in context: A215782 A216438 A292872 * A255624 A008884 A031455
KEYWORD
nonn
AUTHOR
Naohiro Nomoto, Oct 09 2000
EXTENSIONS
More terms from Robert G. Wilson v, May 12 2006
Data corrected and extended by Giovanni Resta, May 10 2020
STATUS
approved