login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008881
a(n) = Product_{j=0..5} floor((n+j)/6).
13
0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 972, 1296, 1728, 2304, 3072, 4096, 5120, 6400, 8000, 10000, 12500, 15625, 18750, 22500, 27000, 32400, 38880, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 134456, 153664, 175616, 200704
OFFSET
0,8
COMMENTS
For n >= 6, a(n) is the maximal product of 6 positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022
The maximal product of k positive variables when their sum is equal to s is obtained when each term = s/k; hence, a(6m) = m^6 (A001014). - Bernard Schott, Jul 28 2022
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,5,-10,5,0,0,0,-10,20,-10,0,0,0,10,-20,10,0,0,0,-5,10,-5,0,0,0,1,-2,1).
FORMULA
Sum_{n>=6} 1/a(n) = 1 + zeta(6). - Amiram Eldar, Jan 10 2023
MAPLE
seq( mul( floor((n+i)/6), i=0..5 ), n=0..80);
MATHEMATICA
Product[Floor[(Range[51]+j-2)/6], {j, 6}] (* G. C. Greubel, Sep 13 2019 *)
PROG
(PARI) vector(50, n, prod(j=0, 5, (n+j)\6) ) \\ G. C. Greubel, Sep 13 2019
(Magma) [(&*[Floor((n+j)/6): j in [0..5]]): n in [0..50]]; // G. C. Greubel, Sep 13 2019
(Sage) [product(floor((n+j)/6) for j in (0..5)) for n in (0..50)] # G. C. Greubel, Sep 13 2019
(GAP) List([0..50], n-> Product([0..5], j-> Int((n+j)/6))); # G. C. Greubel, Sep 13 2019
CROSSREFS
Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), this sequence (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
Cf. A001014 (6th power), A008588 (multiples of 6), A013664.
Sequence in context: A323097 A272985 A318588 * A208743 A335853 A247213
KEYWORD
nonn,easy
STATUS
approved