OFFSET
0,9
COMMENTS
For n >= 7, a(n) is the maximal product of seven positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022
LINKS
M. El-Mikkawy and T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461, Table 1 k=7.
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 6, -12, 6, 0, 0, 0, 0, -15, 30, -15, 0, 0, 0, 0, 20, -40, 20, 0, 0, 0, 0, -15, 30, -15, 0, 0, 0, 0, 6, -12, 6, 0, 0, 0, 0, -1, 2, -1).
FORMULA
a(n) = 2*a(n-1) - a(n-2) + 6*a(n-7) - 12*a(n-8) + 6*a(n-9) - 15*a(n-14) + 30*a(n-15) - 15*a(n-16) + 20*a(n-21) - 40*a(n-22) + 20*a(n-23) - 15*a(n-28) + 30*a(n-29) - 15*a(n-30) + 6*a(n-35) - 12*a(n-36) + 6*a(n-37) - a(n-42) + 2*a(n-43) - a(n-44). - Wesley Ivan Hurt, Jun 29 2022
a(7*n) = n^7 (A001015). - Bernard Schott, Nov 04 2022
Sum_{n>=7} 1/a(n) = 1 + zeta(7). - Amiram Eldar, Jan 10 2023
PROG
(PARI) a(n) = prod(k=0, 6, (n+k)\7); \\ Georg Fischer, Nov 07 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(40)-a(44) from Georg Fischer, Nov 07 2019
STATUS
approved