login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009641
a(n) = Product_{i=0..6} floor((n+i)/7).
13
0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 192, 288, 432, 648, 972, 1458, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 20480, 25600, 32000, 40000, 50000, 62500, 78125, 93750, 112500, 135000, 162000, 194400, 233280, 279936, 326592, 381024
OFFSET
0,9
COMMENTS
For n >= 7, a(n) is the maximal product of seven positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022
LINKS
M. El-Mikkawy and T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461, Table 1 k=7.
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 6, -12, 6, 0, 0, 0, 0, -15, 30, -15, 0, 0, 0, 0, 20, -40, 20, 0, 0, 0, 0, -15, 30, -15, 0, 0, 0, 0, 6, -12, 6, 0, 0, 0, 0, -1, 2, -1).
FORMULA
a(n) = 2*a(n-1) - a(n-2) + 6*a(n-7) - 12*a(n-8) + 6*a(n-9) - 15*a(n-14) + 30*a(n-15) - 15*a(n-16) + 20*a(n-21) - 40*a(n-22) + 20*a(n-23) - 15*a(n-28) + 30*a(n-29) - 15*a(n-30) + 6*a(n-35) - 12*a(n-36) + 6*a(n-37) - a(n-42) + 2*a(n-43) - a(n-44). - Wesley Ivan Hurt, Jun 29 2022
a(7*n) = n^7 (A001015). - Bernard Schott, Nov 04 2022
Sum_{n>=7} 1/a(n) = 1 + zeta(7). - Amiram Eldar, Jan 10 2023
PROG
(PARI) a(n) = prod(k=0, 6, (n+k)\7); \\ Georg Fischer, Nov 07 2019
CROSSREFS
Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), this sequence (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
Sequence in context: A036144 A327368 A286660 * A089889 A297526 A229617
KEYWORD
nonn,easy
EXTENSIONS
a(40)-a(44) from Georg Fischer, Nov 07 2019
STATUS
approved