login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009640
Expansion of e.g.f.: tan(log(1+tanh(x))).
0
0, 1, -1, 2, -10, 46, -226, 1532, -11880, 96136, -882376, 9179312, -102310000, 1223945776, -15941391376, 222827194592, -3303846357120, 52077034777216, -871329939918976, 15375474411183872, -285315305595562240, 5562663216718387456, -113653337185088018176
OFFSET
0,4
FORMULA
a(n)=sum(m=0..(n-1)/2, (sum(j=1..2*m+1, j!*2^(2*m-j+1)*(-1)^(m+j+1)* stirling2(2*m+1,j)))*sum(r=2*m+1..n,(stirling1(r,2*m+1)*sum(k=r..n, binomial(k-1,r-1)*k!*2^(n-k)*stirling2(n,k)*(-1)^(r+k)))/r!)). - Vladimir Kruchinin, Jun 21 2011
a(n) ~ (-1)^(n+1) * n! / ((2-exp(-Pi/2)) * (log(2*exp(Pi/2)-1)/2)^(n+1)). - Vaclav Kotesovec, Feb 02 2015
MATHEMATICA
CoefficientList[Series[Tan[Log[1+Tanh[x]]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 02 2015 *)
PROG
(Maxima)
a(n):=sum((sum(j!*2^(2*m-j+1)*(-1)^(m+j+1)*stirling2(2*m+1, j), j, 1, 2*m+1))*sum((stirling1(r, 2*m+1)*sum(binomial(k-1, r-1)*k!*2^(n-k)*stirling2(n, k)*(-1)^(r+k), k, r, n))/r!, r, 2*m+1, n), m, 0, (n-1)/2); /* Vladimir Kruchinin Jun 21 2011 */
CROSSREFS
Sequence in context: A137635 A029706 A191644 * A191684 A081167 A321274
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Jun 20 2023
STATUS
approved