OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (x + y + x^2*y + x*y^2)). - Gheorghe Coserea, Aug 31 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: A(x) = 1/sqrt(1 - 4x(1+x)^2).
D-finite with recurrence: n*a(n) +2*(-2*n+1)*a(n-1) +8*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jan 14 2020
a(n) = binomial(2*n, n)*hypergeom([(1-2*n)/3, 2*(1-n)/3, -2*n/3], [1/2-n, 1/2-n], -3^3/2^4). - Stefano Spezia, Jul 11 2024
MATHEMATICA
CoefficientList[Series[1/Sqrt[1 - 4*x*(1 + x)^2], {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
Table[Sum[Binomial[2k, k]Binomial[2k, n-k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Dec 31 2018 *)
a[n_]:=Binomial[2n, n]HypergeometricPFQ[{(1-2*n)/3, 2(1-n)/3, -2n/3}, {1/2-n, 1/2-n}, -3^3/2^4]; Array[a, 24, 0] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(2*k, k)*binomial(2*k, n-k));
(PARI) a(n)=polcoeff(1/sqrt(1-4*x*(1+x +x*O(x^n))^2), n, x); /* Using the g.f.: */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2008
STATUS
approved