login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137635
a(n) = Sum_{k=0..n} C(2k,k)*C(2k,n-k); equals row 0 of square array A137634.
23
1, 2, 10, 46, 226, 1136, 5810, 30080, 157162, 826992, 4376408, 23267332, 124179570, 664919780, 3570265000, 19216805476, 103652442922, 560127574340, 3031887311256, 16435458039076, 89213101943000, 484839755040768, 2637805800869740, 14365506336197816
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (x + y + x^2*y + x*y^2)). - Gheorghe Coserea, Aug 31 2018
LINKS
FORMULA
G.f.: A(x) = 1/sqrt(1 - 4x(1+x)^2).
D-finite with recurrence: n*a(n) +2*(-2*n+1)*a(n-1) +8*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jan 14 2020
a(n) = binomial(2*n, n)*hypergeom([(1-2*n)/3, 2*(1-n)/3, -2*n/3], [1/2-n, 1/2-n], -3^3/2^4). - Stefano Spezia, Jul 11 2024
MATHEMATICA
CoefficientList[Series[1/Sqrt[1 - 4*x*(1 + x)^2], {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
Table[Sum[Binomial[2k, k]Binomial[2k, n-k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Dec 31 2018 *)
a[n_]:=Binomial[2n, n]HypergeometricPFQ[{(1-2*n)/3, 2(1-n)/3, -2n/3}, {1/2-n, 1/2-n}, -3^3/2^4]; Array[a, 24, 0] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(2*k, k)*binomial(2*k, n-k));
(PARI) a(n)=polcoeff(1/sqrt(1-4*x*(1+x +x*O(x^n))^2), n, x); /* Using the g.f.: */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2008
STATUS
approved