login
A137635
a(n) = Sum_{k=0..n} C(2k,k)*C(2k,n-k); equals row 0 of square array A137634.
23
1, 2, 10, 46, 226, 1136, 5810, 30080, 157162, 826992, 4376408, 23267332, 124179570, 664919780, 3570265000, 19216805476, 103652442922, 560127574340, 3031887311256, 16435458039076, 89213101943000, 484839755040768, 2637805800869740, 14365506336197816
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (x + y + x^2*y + x*y^2)). - Gheorghe Coserea, Aug 31 2018
LINKS
FORMULA
G.f.: A(x) = 1/sqrt(1 - 4x(1+x)^2).
D-finite with recurrence: n*a(n) +2*(-2*n+1)*a(n-1) +8*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jan 14 2020
a(n) = binomial(2*n, n)*hypergeom([(1-2*n)/3, 2*(1-n)/3, -2*n/3], [1/2-n, 1/2-n], -3^3/2^4). - Stefano Spezia, Jul 11 2024
MATHEMATICA
CoefficientList[Series[1/Sqrt[1 - 4*x*(1 + x)^2], {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
Table[Sum[Binomial[2k, k]Binomial[2k, n-k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Dec 31 2018 *)
a[n_]:=Binomial[2n, n]HypergeometricPFQ[{(1-2*n)/3, 2(1-n)/3, -2n/3}, {1/2-n, 1/2-n}, -3^3/2^4]; Array[a, 24, 0] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(2*k, k)*binomial(2*k, n-k));
(PARI) a(n)=polcoeff(1/sqrt(1-4*x*(1+x +x*O(x^n))^2), n, x); /* Using the g.f.: */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2008
STATUS
approved