login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137638
Antidiagonal sums of square array A137634.
4
1, 3, 15, 72, 361, 1840, 9505, 49578, 260540, 1377328, 7316373, 39020372, 208809544, 1120621368, 6029023185, 32507001876, 175604614108, 950233307930, 5149691511432, 27946158749572, 151843410356906, 825949622559366
OFFSET
0,2
FORMULA
G.f.: A(x) = 2*(1+x)/((1+2*x + G(x))*G(x)) where G(x) = sqrt(1 - 4*x*(1+x)^2).
a(n) = Sum_{k=0..n} Sum_{j=0..k} C(n-k+2*j,j)*C(n-k+2*j,k-j).
D-finite with recurrence 2*(n+1)*a(n) +(-3*n-7)*a(n-1) +2*(-17*n+10)*a(n-2) +8*(-7*n+10)*a(n-3) +2*(-18*n+37)*a(n-4) +4*(-2*n+5)*a(n-5)=0. - R. J. Mathar, Jun 23 2023
PROG
(PARI) {a(n)=sum(k=0, n, sum(j=0, k, binomial(2*j+n-k, j)*binomial(2*j+n-k, k-j)))} /* Using the g.f.: */ {a(n)=local(G=sqrt(1 - 4*x*(1+x)^2 +x*O(x^n))); polcoeff(2*(1+x)/((1+2*x+G)*G), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 31 2008
STATUS
approved