login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137632
Sums of 2 cubes of distinct odd primes.
1
152, 370, 468, 1358, 1456, 1674, 2224, 2322, 2540, 3528, 4940, 5038, 5256, 6244, 6886, 6984, 7110, 7202, 8190, 9056, 11772, 12194, 12292, 12510, 13498, 14364, 17080, 19026, 24416, 24514, 24732, 25720, 26586, 29302, 29818, 29916, 30134
OFFSET
1,1
EXAMPLE
3^3 + 5^3 = 152 = a(1).
3^3 + 7^3 = 370 = a(2).
5^3 + 7^3 = 468 = a(3).
MAPLE
A137632 := proc(amax) local a, p, q; a := {} ; p := 3 ; while p^3 < amax do q := nextprime(p) ; while p^3+q^3 < amax do a := a union {p^3+q^3} ; q := nextprime(q) ; od: p := nextprime(p) ; od: sort(convert(a, list)) ; end: A137632(80000) ; # R. J. Mathar, May 04 2008
MATHEMATICA
f[upto_]:=Module[{max=Ceiling[Power[upto-27, (3)^-1]], prs}, prs=Prime[Range[2, max]]; Select[Union[Total/@(Subsets[prs, {2}]^3)], #<=upto&]]; f[31000] (* Harvey P. Dale, Apr 20 2011 *)
CROSSREFS
A subset of A120398 and A086119. Cf. A138853, A138854.
Sequence in context: A252363 A248816 A038857 * A259740 A253359 A226365
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 13 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 13 2008, May 04 2008
STATUS
approved