login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138853
Numbers which are the sum of 3 cubes of distinct odd primes.
4
495, 1483, 1701, 1799, 2349, 2567, 2665, 3555, 3653, 3871, 5065, 5283, 5381, 6271, 6369, 6587, 7011, 7137, 7229, 7235, 7327, 7453, 8217, 8315, 8441, 8533, 9083, 9181, 9399, 10387, 11799, 11897, 12115, 12319, 12537, 12635, 13103, 13525, 13623, 13841
OFFSET
1,1
COMMENTS
Dropping the restriction to odd primes would add to this sequence of odd terms the sequence of even terms of the form 8+p(i)^3+p(j)^3 (i>j>1), i.e. 8+{ even terms of A120398 }, cf. A138854.
LINKS
FORMULA
A138853={ p(i)^3+p(j)^3+p(k)^3 ; i>j>k>1 }
PROG
(PARI) isA138853(n)= local( c, d); n>494 && forprime( p=floor( sqrtn( n\3+1, 3))+1, floor( sqrtn( n-151, 3)), d=n-p^3; forprime( q=floor( sqrtn( d\2+1, 3))+1, min( p-1, floor( sqrtn( d-26, 3))), round( sqrtn( c=d-q^3, 3 ))^3==c || next; isprime( round( sqrtn( c, 3 ))) && return(1)))
forstep(n=3^3+5^3+7^3, 10^5, 2, isA138853(n)&print1(n", "))
CROSSREFS
Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A138854, A120398.
Sequence in context: A059828 A160851 A031898 * A164716 A164718 A151965
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 13 2008
STATUS
approved