login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A138851
Nearest integer to 1/(round(x)-x), where exp(Pi sqrt(n))-744 = (12(x^2-1))^3.
4
-4, -3, -2, 2, 3, 5, 12, -33, -7, -4, -2, 2, 3, 6, 8954018, -6, -3, 2, 3, 9, -12, -3, -2, 4, 18, -6, -2, 3, 14, -5, -2, 4, -21, -3, 3, 51, -3, 3, 2683620901418, -3, 4, -9, 2, 11, -3, 4, -5, 3, -10, 2, -17, 2, -14, 2, -7, 3, -4, 7, -2, -16, 3, -3, 31514540715033062, 3, -3, -12, 5, 2, -3, -9, 12, 4, 2, -2, -3, -4, -7, -10, -16, -19, -16
OFFSET
5,1
COMMENTS
Records are attained at the larger Heegener numbers (A003173).
T. Piezas draws attention on the fact that the integers very close to exp(pi sqrt(n)) are of the form (12(k^2-1))^3+744. Here this closeness is expressed as the (rounded value) of the reciprocal of the (signed) distance of these k-values from the integers.
EXAMPLE
We have e^(Pi sqrt(19))-744 = (12(x^2-1))^3 with x = 2.9999998883... = 3 - 1/8954017.533..., therefore a(19) = 8954018.
In the same way, e^(Pi sqrt(163))-744 = (12(x^2-1))^3 with x = 230.999999999999999999999999999890... = 231 - 1/9093255353570474976233448828.20..., thus a(163) = 9093255353570474976233448828.
MATHEMATICA
a[n_] := Module[{x = Sqrt[Surd[Exp[Pi * Sqrt[n]] - 744, 3] / 12 + 1]}, Round[1/(Round[x] - x)]]; Array[a, 100, 5] (* Amiram Eldar, Jan 17 2025 *)
PROG
(PARI) default(realprecision, 200); A138851(n)={ n=frac( sqrt( sqrtn( exp( sqrt(n)*Pi )-744, 3)/12 + 1 )); round( 1/(round(n)-n)) }
CROSSREFS
Cf. A003173, A014708, A056581 and references therein, A138852.
Sequence in context: A117462 A155462 A109496 * A181061 A329934 A269611
KEYWORD
sign,changed
AUTHOR
M. F. Hasler, Apr 16 2008
STATUS
approved