OFFSET
5,1
COMMENTS
Records are attained at the larger Heegener numbers (A003173).
T. Piezas draws attention on the fact that the integers very close to exp(pi sqrt(n)) are of the form (12(k^2-1))^3+744. Here this closeness is expressed as the (rounded value) of the reciprocal of the (signed) distance of these k-values from the integers.
LINKS
Amiram Eldar, Table of n, a(n) for n = 5..10000
Titus Piezas III, "More on e^(pi*sqrt(163))" on sci.math.research, April 13, 2008 and The Ramanujan Pages.
EXAMPLE
We have e^(Pi sqrt(19))-744 = (12(x^2-1))^3 with x = 2.9999998883... = 3 - 1/8954017.533..., therefore a(19) = 8954018.
In the same way, e^(Pi sqrt(163))-744 = (12(x^2-1))^3 with x = 230.999999999999999999999999999890... = 231 - 1/9093255353570474976233448828.20..., thus a(163) = 9093255353570474976233448828.
MATHEMATICA
a[n_] := Module[{x = Sqrt[Surd[Exp[Pi * Sqrt[n]] - 744, 3] / 12 + 1]}, Round[1/(Round[x] - x)]]; Array[a, 100, 5] (* Amiram Eldar, Jan 17 2025 *)
PROG
(PARI) default(realprecision, 200); A138851(n)={ n=frac( sqrt( sqrtn( exp( sqrt(n)*Pi )-744, 3)/12 + 1 )); round( 1/(round(n)-n)) }
CROSSREFS
KEYWORD
sign,changed
AUTHOR
M. F. Hasler, Apr 16 2008
STATUS
approved