login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269611 Decimal expansion of Sum_{n>=1} (sin(Pi/n))^2. 5
4, 3, 2, 2, 6, 7, 5, 0, 4, 3, 2, 3, 9, 6, 3, 7, 1, 4, 1, 1, 1, 8, 5, 5, 6, 0, 6, 3, 4, 4, 0, 4, 2, 8, 0, 9, 2, 0, 7, 8, 5, 2, 1, 7, 3, 5, 5, 0, 5, 3, 1, 9, 5, 5, 5, 2, 5, 6, 9, 9, 9, 6, 5, 9, 9, 2, 3, 0, 0, 3, 0, 1, 0, 6, 1, 4, 8, 2, 3, 0, 7, 9, 8, 4, 1, 1, 0, 7, 7, 0, 5, 8, 5, 1, 5, 0, 2, 6, 3, 5, 0, 8, 1, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
Equals (1/2) * Sum_{n>=1} (1 - cos(2*Pi/n)).
Equals Sum_{k>=1} (-1)^(k+1) * 2^(2*k-1) * Pi^(2*k) * Zeta(2*k) / (2*k)!, where Zeta is the Riemann zeta function.
Equals Sum_{k>=1} 2^(4*k-2) * Pi^(4*k) * B(2*k) / (2*k)!^2, where B(n) is the Bernoulli number A027641(n)/A027642(n).
EXAMPLE
4.32267504323963714111855606344042809207852173550531955525699965992300301...
MAPLE
evalf(Sum((sin(Pi/n))^2, n=1..infinity), 120);
MATHEMATICA
RealDigits[NSum[Sin[Pi/n]^2, {n, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 10000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]][[1]]
PROG
(PARI) default(realprecision, 120); sumpos(n=1, (sin(Pi/n))^2)
CROSSREFS
Sequence in context: A138851 A181061 A329934 * A090342 A010307 A001178
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Mar 01 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 09:57 EDT 2024. Contains 374239 sequences. (Running on oeis4.)