login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269614
Number of length-n 0..3 arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.
1
4, 16, 64, 249, 954, 3611, 13544, 50442, 186822, 688899, 2531406, 9275757, 33912330, 123759252, 450985950, 1641487455, 5969001906, 21688869249, 78760649178, 285872602590, 1037218320720, 3762161399673, 13642773106086, 49463937282915
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 12*a(n-1) - 51*a(n-2) + 81*a(n-3) - 3*a(n-4) - 63*a(n-5) - 24*a(n-6) - 9*a(n-7).
Empirical g.f.: x*(4 - 32*x + 76*x^2 - 27*x^3 - 54*x^4 - 22*x^5 - 7*x^6) / ((1 - 3*x)*(1 - 9*x + 24*x^2 - 9*x^3 - 24*x^4 - 9*x^5 - 3*x^6)). - Colin Barker, Jan 25 2019
EXAMPLE
Some solutions for n=8:
..0. .3. .2. .3. .1. .0. .0. .0. .2. .2. .2. .3. .2. .2. .2. .3
..3. .3. .1. .3. .3. .2. .2. .2. .0. .3. .1. .1. .1. .3. .2. .0
..3. .0. .3. .2. .2. .1. .0. .3. .1. .3. .3. .3. .2. .0. .2. .0
..2. .3. .2. .2. .1. .3. .0. .3. .0. .1. .2. .2. .1. .0. .1. .2
..3. .2. .3. .2. .0. .2. .1. .0. .1. .0. .0. .3. .3. .1. .3. .0
..1. .2. .3. .1. .0. .3. .2. .3. .3. .3. .0. .2. .1. .2. .1. .2
..0. .1. .0. .3. .3. .3. .0. .2. .0. .3. .2. .3. .2. .0. .0. .0
..3. .0. .2. .0. .1. .1. .2. .3. .2. .1. .3. .3. .1. .0. .3. .1
CROSSREFS
Column 3 of A269619.
Sequence in context: A180239 A006811 A269685 * A267975 A269489 A259898
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved