login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269615
Number of length-n 0..4 arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1.
1
5, 25, 125, 612, 2956, 14125, 66925, 314935, 1473779, 6865098, 31856590, 147352985, 679742085, 3128486473, 14370696813, 65902020548, 301787376436, 1380297559417, 6306497302225, 28787967919963, 131309246498679, 598532215284482
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 16*a(n-1) - 93*a(n-2) + 220*a(n-3) - 115*a(n-4) - 168*a(n-5) - 44*a(n-6) - 16*a(n-7).
Empirical g.f.: x*(5 - 55*x + 190*x^2 - 163*x^3 - 136*x^4 - 40*x^5 - 12*x^6) / ((1 - 4*x)*(1 - 12*x + 45*x^2 - 40*x^3 - 45*x^4 - 12*x^5 - 4*x^6)). - Colin Barker, Jan 25 2019
EXAMPLE
Some solutions for n=7:
..3. .1. .0. .1. .4. .3. .4. .1. .1. .1. .1. .0. .2. .3. .2. .3
..2. .4. .3. .1. .1. .3. .3. .0. .2. .2. .2. .1. .2. .0. .0. .4
..0. .2. .1. .3. .2. .3. .2. .4. .0. .1. .3. .2. .3. .3. .2. .1
..4. .4. .1. .4. .2. .4. .1. .4. .2. .2. .0. .1. .0. .3. .3. .0
..0. .0. .1. .1. .2. .3. .1. .2. .1. .2. .4. .4. .1. .4. .0. .2
..2. .1. .3. .3. .3. .2. .4. .1. .0. .0. .1. .1. .0. .2. .3. .1
..2. .0. .4. .1. .0. .4. .2. .0. .1. .4. .2. .3. .1. .2. .3. .2
CROSSREFS
Column 4 of A269619.
Sequence in context: A267780 A228736 A126642 * A269579 A269431 A269686
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved