login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269686 Number of length-n 0..4 arrays with no repeated value differing from the previous repeated value by plus or minus one modulo 4+1. 1
5, 25, 125, 615, 2995, 14465, 69405, 331255, 1574195, 7454385, 35195485, 165766535, 779138355, 3655796065, 17128371485, 80151962775, 374677320115, 1749902587025, 8166591981405, 38087874378535, 177538468225715, 827166275107905 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) - 13*a(n-2) - 12*a(n-3).
Conjectures from Colin Barker, Jan 27 2019: (Start)
G.f.: 5*x*(1 - 3*x - 2*x^2) / ((1 - 4*x)*(1 - 4*x - 3*x^2)).
a(n) = (-5/42)*(7*4^n + (2-sqrt(7))^n*(-7+3*sqrt(7)) - (2+sqrt(7))^n*(7+3*sqrt(7))).
(End)
EXAMPLE
Some solutions for n=7:
..3. .0. .4. .1. .2. .2. .2. .3. .2. .3. .3. .0. .0. .2. .2. .3
..1. .3. .2. .3. .4. .0. .3. .0. .2. .1. .4. .0. .2. .2. .0. .3
..2. .0. .3. .0. .0. .1. .1. .2. .2. .0. .1. .4. .2. .2. .3. .4
..2. .4. .2. .2. .3. .1. .1. .1. .2. .0. .0. .1. .2. .3. .0. .2
..2. .3. .3. .1. .0. .0. .1. .3. .4. .0. .0. .0. .4. .4. .3. .3
..2. .3. .2. .4. .2. .1. .3. .2. .2. .2. .2. .2. .3. .0. .2. .2
..1. .3. .3. .0. .3. .2. .4. .4. .1. .3. .4. .4. .1. .4. .0. .4
CROSSREFS
Column 4 of A269690.
Sequence in context: A269615 A269579 A269431 * A269490 A269772 A269652
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 03 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 04:56 EST 2023. Contains 367629 sequences. (Running on oeis4.)