login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269686
Number of length-n 0..4 arrays with no repeated value differing from the previous repeated value by plus or minus one modulo 4+1.
1
5, 25, 125, 615, 2995, 14465, 69405, 331255, 1574195, 7454385, 35195485, 165766535, 779138355, 3655796065, 17128371485, 80151962775, 374677320115, 1749902587025, 8166591981405, 38087874378535, 177538468225715, 827166275107905
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) - 13*a(n-2) - 12*a(n-3).
Conjectures from Colin Barker, Jan 27 2019: (Start)
G.f.: 5*x*(1 - 3*x - 2*x^2) / ((1 - 4*x)*(1 - 4*x - 3*x^2)).
a(n) = (-5/42)*(7*4^n + (2-sqrt(7))^n*(-7+3*sqrt(7)) - (2+sqrt(7))^n*(7+3*sqrt(7))).
(End)
EXAMPLE
Some solutions for n=7:
..3. .0. .4. .1. .2. .2. .2. .3. .2. .3. .3. .0. .0. .2. .2. .3
..1. .3. .2. .3. .4. .0. .3. .0. .2. .1. .4. .0. .2. .2. .0. .3
..2. .0. .3. .0. .0. .1. .1. .2. .2. .0. .1. .4. .2. .2. .3. .4
..2. .4. .2. .2. .3. .1. .1. .1. .2. .0. .0. .1. .2. .3. .0. .2
..2. .3. .3. .1. .0. .0. .1. .3. .4. .0. .0. .0. .4. .4. .3. .3
..2. .3. .2. .4. .2. .1. .3. .2. .2. .2. .2. .2. .3. .0. .2. .2
..1. .3. .3. .0. .3. .2. .4. .4. .1. .3. .4. .4. .1. .4. .0. .4
CROSSREFS
Column 4 of A269690.
Sequence in context: A269615 A269579 A269431 * A269490 A370144 A269772
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 03 2016
STATUS
approved