login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269689
Number of length-n 0..7 arrays with no repeated value differing from the previous repeated value by plus or minus one modulo 7+1.
1
8, 64, 512, 4080, 32416, 256880, 2031072, 16027696, 126262688, 993181680, 7802084704, 61219340720, 479867497248, 3758025752944, 29406845849312, 229946299629360, 1796916741666976, 14034055973604080, 109551619154344032
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 14*a(n-1) - 43*a(n-2) - 42*a(n-3).
Conjectures from Colin Barker, Jan 27 2019: (Start)
G.f.: 8*x*(1 - 6*x - 5*x^2) / ((1 - 7*x)*(1 - 7*x - 6*x^2)).
a(n) = (2^(1-n)*(-73*2^(2+n)*7^n - 7*(7-sqrt(73))^n*(-73+9*sqrt(73)) + 7*(7+sqrt(73))^n*(73+9*sqrt(73)))) / 1533.
(End)
EXAMPLE
Some solutions for n=5:
..1. .0. .0. .1. .5. .5. .6. .7. .6. .4. .1. .1. .7. .0. .2. .0
..6. .3. .5. .3. .2. .4. .6. .1. .7. .0. .6. .3. .1. .4. .6. .3
..1. .6. .4. .1. .2. .0. .6. .4. .2. .6. .6. .4. .3. .0. .6. .7
..0. .6. .4. .3. .5. .1. .5. .4. .6. .1. .5. .1. .4. .1. .6. .5
..3. .0. .5. .2. .2. .7. .6. .1. .7. .4. .7. .6. .2. .7. .1. .7
CROSSREFS
Column 7 of A269690.
Sequence in context: A269618 A269582 A269434 * A269493 A269775 A269655
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 03 2016
STATUS
approved