login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269619 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1. 12
2, 3, 4, 4, 9, 8, 5, 16, 27, 15, 6, 25, 64, 78, 28, 7, 36, 125, 249, 222, 51, 8, 49, 216, 612, 954, 624, 92, 9, 64, 343, 1275, 2956, 3611, 1740, 164, 10, 81, 512, 2370, 7440, 14125, 13544, 4824, 290, 11, 100, 729, 4053, 16218, 43013, 66925, 50442, 13320, 509, 12, 121 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Table starts
...2.....3......4.......5........6.........7.........8..........9.........10
...4.....9.....16......25.......36........49........64.........81........100
...8....27.....64.....125......216.......343.......512........729.......1000
..15....78....249.....612.....1275......2370......4053.......6504.......9927
..28...222....954....2956.....7440.....16218.....31822......57624......97956
..51...624...3611...14125....43013....110099....248143.....507521.....961625
..92..1740..13544...66925...246798....742487...1923796....4447329....9398090
.164..4824..50442..314935..1407232...4979260..14840928...38800210...91490344
.290.13320.186822.1473779..7982022..33232924.113998742..337209090..887591878
.509.36672.688899.6865098.45074673.220896016.872397577.2920747321.8584628259
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3)
k=3: a(n) = 12*a(n-1) -51*a(n-2) +81*a(n-3) -3*a(n-4) -63*a(n-5) -24*a(n-6) -9*a(n-7)
k=4: [order 7]
k=5: [order 13]
k=6: [order 15]
k=7: [order 17]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 5*n^2 + 5*n
n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 12*n^2 + 3*n
n=6: a(n) = n^6 + 6*n^5 + 9*n^4 + 22*n^3 + 9*n^2 + 9*n - 7 for n>2
n=7: a(n) = n^7 + 7*n^6 + 11*n^5 + 35*n^4 + 18*n^3 + 36*n^2 - 19*n - 7 for n>2
EXAMPLE
Some solutions for n=6 k=4
..1. .2. .0. .2. .1. .4. .3. .4. .2. .2. .0. .2. .2. .2. .2. .0
..0. .3. .3. .1. .4. .0. .0. .0. .2. .1. .0. .1. .0. .2. .4. .3
..4. .3. .2. .1. .1. .3. .0. .4. .1. .0. .4. .3. .1. .2. .4. .1
..3. .3. .2. .2. .4. .2. .4. .0. .3. .3. .0. .3. .4. .3. .3. .1
..0. .3. .1. .3. .0. .1. .3. .4. .1. .1. .2. .1. .4. .1. .4. .1
..0. .3. .0. .4. .4. .1. .4. .2. .1. .0. .1. .0. .3. .4. .2. .2
CROSSREFS
Column 1 is A029907(n+1).
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A000578(n+1).
Sequence in context: A269690 A269494 A269776 * A269435 A269656 A223949
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 3 18:44 EDT 2023. Contains 363116 sequences. (Running on oeis4.)