The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269619 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two, zero or minus 1. 12
 2, 3, 4, 4, 9, 8, 5, 16, 27, 15, 6, 25, 64, 78, 28, 7, 36, 125, 249, 222, 51, 8, 49, 216, 612, 954, 624, 92, 9, 64, 343, 1275, 2956, 3611, 1740, 164, 10, 81, 512, 2370, 7440, 14125, 13544, 4824, 290, 11, 100, 729, 4053, 16218, 43013, 66925, 50442, 13320, 509, 12, 121 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Table starts ...2.....3......4.......5........6.........7.........8..........9.........10 ...4.....9.....16......25.......36........49........64.........81........100 ...8....27.....64.....125......216.......343.......512........729.......1000 ..15....78....249.....612.....1275......2370......4053.......6504.......9927 ..28...222....954....2956.....7440.....16218.....31822......57624......97956 ..51...624...3611...14125....43013....110099....248143.....507521.....961625 ..92..1740..13544...66925...246798....742487...1923796....4447329....9398090 .164..4824..50442..314935..1407232...4979260..14840928...38800210...91490344 .290.13320.186822.1473779..7982022..33232924.113998742..337209090..887591878 .509.36672.688899.6865098.45074673.220896016.872397577.2920747321.8584628259 LINKS R. H. Hardin, Table of n, a(n) for n = 1..9999 FORMULA Empirical for column k: k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) k=3: a(n) = 12*a(n-1) -51*a(n-2) +81*a(n-3) -3*a(n-4) -63*a(n-5) -24*a(n-6) -9*a(n-7) k=4: [order 7] k=5: [order 13] k=6: [order 15] k=7: [order 17] Empirical for row n: n=1: a(n) = n + 1 n=2: a(n) = n^2 + 2*n + 1 n=3: a(n) = n^3 + 3*n^2 + 3*n + 1 n=4: a(n) = n^4 + 4*n^3 + 5*n^2 + 5*n n=5: a(n) = n^5 + 5*n^4 + 7*n^3 + 12*n^2 + 3*n n=6: a(n) = n^6 + 6*n^5 + 9*n^4 + 22*n^3 + 9*n^2 + 9*n - 7 for n>2 n=7: a(n) = n^7 + 7*n^6 + 11*n^5 + 35*n^4 + 18*n^3 + 36*n^2 - 19*n - 7 for n>2 EXAMPLE Some solutions for n=6 k=4 ..1. .2. .0. .2. .1. .4. .3. .4. .2. .2. .0. .2. .2. .2. .2. .0 ..0. .3. .3. .1. .4. .0. .0. .0. .2. .1. .0. .1. .0. .2. .4. .3 ..4. .3. .2. .1. .1. .3. .0. .4. .1. .0. .4. .3. .1. .2. .4. .1 ..3. .3. .2. .2. .4. .2. .4. .0. .3. .3. .0. .3. .4. .3. .3. .1 ..0. .3. .1. .3. .0. .1. .3. .4. .1. .1. .2. .1. .4. .1. .4. .1 ..0. .3. .0. .4. .4. .1. .4. .2. .1. .0. .1. .0. .3. .4. .2. .2 CROSSREFS Column 1 is A029907(n+1). Row 1 is A000027(n+1). Row 2 is A000290(n+1). Row 3 is A000578(n+1). Sequence in context: A269690 A269494 A269776 * A269435 A269656 A223949 Adjacent sequences: A269616 A269617 A269618 * A269620 A269621 A269622 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Mar 01 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 3 18:44 EDT 2023. Contains 363116 sequences. (Running on oeis4.)