login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269435
T(n,k)=Number of length-n 0..k arrays with no repeated value greater than the previous repeated value.
9
2, 3, 4, 4, 9, 8, 5, 16, 27, 15, 6, 25, 64, 78, 28, 7, 36, 125, 250, 222, 51, 8, 49, 216, 615, 964, 622, 92, 9, 64, 343, 1281, 2995, 3674, 1722, 164, 10, 81, 512, 2380, 7536, 14455, 13868, 4719, 290, 11, 100, 729, 4068, 16408, 44021, 69235, 51917, 12821, 509, 12, 121
OFFSET
1,1
COMMENTS
Table starts
...2.....3......4.......5........6.........7.........8..........9.........10
...4.....9.....16......25.......36........49........64.........81........100
...8....27.....64.....125......216.......343.......512........729.......1000
..15....78....250.....615.....1281......2380......4068.......6525.......9955
..28...222....964....2995.....7536.....16408.....32152......58149......98740
..51...622...3674...14455....44021....112476....252932.....516189.....976135
..92..1722..13868...69235...255576....767172...1981512....4566213....9621220
.164..4719..51917..329430..1475871...5209554..15465934...40265487...94574110
.290.12821.192980.1558430..8482276..35236110.120310016..354051015..927338710
.509.34575.712868.7334806.48543777.237479970.933059856.3105016479.9072298237
From Robert Israel, May 30 2019: (Start)
For each of the A000110 partitions pi of the set {1,...,n}, let A_pi(n,k) be the number of length-n 0..k arrays v, such that v(i)=v(j) if and only if i and j are in the same part, and with no repeated value greater than the previous repeated value. There are restrictions on the values in the parts: if two parts a and b each have cardinality >= 2 and a_2 < b_2 (where the parts are indexed in increasing order), then v(b_i) < v(a_i). Thus if there are m partitions with cardinality >= 2, the values on those m parts are decreasing (listing these parts in order of their second entries). So for a partition with j parts of which m have cardinality >= 2, we have A_pi(n,k) = (k+1)*k*...*(k+2-j)/m!, which is a polynomial in k of degree j. The partition of largest cardinality is the partition into singletons, which has m=0. The result is that for each n, T(n,k) is a monic polynomial of degree n. To verify the "empirical" formula for a row, only n terms in that row need to be computed. (End)
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 6*a(n-1) -9*a(n-2) -4*a(n-3) +9*a(n-4) +6*a(n-5) +a(n-6)
k=3: [order 8]
k=4: [order 10]
k=5: [order 12]
k=6: [order 14]
k=7: [order 16]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + (11/2)*n^2 + (7/2)*n + 1
n=5: a(n) = n^5 + 5*n^4 + (17/2)*n^3 + 8*n^2 + (9/2)*n + 1
n=6: a(n) = n^6 + 6*n^5 + 12*n^4 + (44/3)*n^3 + (23/2)*n^2 + (29/6)*n + 1
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + (71/3)*n^4 + (139/6)*n^3 + (43/3)*n^2 + (35/6)*n + 1
EXAMPLE
Some solutions for n=6 k=4
..1. .2. .3. .3. .2. .2. .2. .4. .3. .2. .3. .4. .3. .2. .1. .2
..4. .3. .3. .4. .0. .0. .4. .3. .1. .0. .2. .3. .4. .0. .3. .4
..3. .0. .1. .3. .3. .0. .3. .4. .3. .4. .3. .3. .3. .3. .4. .0
..3. .4. .3. .2. .1. .0. .3. .2. .1. .3. .4. .3. .2. .0. .0. .0
..3. .1. .4. .2. .2. .2. .2. .4. .3. .0. .3. .3. .3. .4. .4. .2
..2. .4. .3. .1. .3. .3. .0. .4. .2. .1. .2. .0. .0. .3. .4. .3
CROSSREFS
Column 1 is A029907(n+1).
Column 2 is A268013.
Column 3 is A267975.
Diagonal is A268104.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A000578(n+1).
Sequence in context: A269494 A269776 A269619 * A269656 A223949 A224133
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 26 2016
STATUS
approved