login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269438
Number of length-6 0..n arrays with no repeated value greater than the previous repeated value.
1
51, 622, 3674, 14455, 44021, 112476, 252932, 516189, 976135, 1735866, 2934526, 4754867, 7431529, 11260040, 16606536, 23918201, 33734427, 46698694, 63571170, 85242031, 112745501, 147274612, 190196684, 243069525, 307658351, 385953426
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^6 + 6*n^5 + 12*n^4 + (44/3)*n^3 + (23/2)*n^2 + (29/6)*n + 1.
Conjectures from Colin Barker, Jan 22 2019: (Start)
G.f.: x*(51 + 265*x + 391*x^2 + 14*x^3 + 5*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=6:
..0. .0. .0. .0. .1. .5. .6. .4. .4. .1. .2. .3. .5. .2. .4. .5
..5. .4. .1. .3. .5. .4. .2. .2. .3. .2. .4. .2. .1. .0. .2. .5
..4. .6. .4. .5. .0. .6. .2. .5. .1. .5. .3. .6. .5. .2. .1. .2
..5. .5. .4. .0. .5. .5. .2. .3. .4. .5. .4. .5. .5. .4. .2. .6
..3. .3. .6. .2. .0. .0. .0. .0. .1. .5. .1. .5. .2. .1. .5. .2
..3. .3. .3. .4. .5. .2. .3. .0. .4. .3. .6. .5. .0. .6. .2. .4
CROSSREFS
Row 6 of A269435.
Sequence in context: A319542 A173804 A166820 * A269622 A210055 A020278
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 26 2016
STATUS
approved